The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrume...The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived FeO and TiO_(2)abundances.The FeO and TiO_(2)abundances derived from the M^(3)data were compared with the previous results of the Clementine data and were in good agreement.The FeO abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M3 derived abundances were compared with the laboratory measured FeO and TiO2 contents in the Apollo and Luna returned samples.The Clementine derived FeO content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M^(3)derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived TiO2 abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M3 derived TiO_(2)agreed well(±0.6%)with the laboratory measurements of the returned samples,except for samples with high TiO2 content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.展开更多
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of...This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
The study area is covered by alluvium having average thickness of about 200 m that is underlain by the Precambrian basement rock units including iron ore to be mined in future. In this regards, necessary campaign of s...The study area is covered by alluvium having average thickness of about 200 m that is underlain by the Precambrian basement rock units including iron ore to be mined in future. In this regards, necessary campaign of subsurface investigations including both geotechnical and hydrogeological has been carried. In geotechnical investigations, disturbed and undisturbed samples were collected from five (5) boreholes and hydrological investigations by using water pump out test were conducted to determine the characteristics of aquifer. Rock samples were also collected from already drilled boreholes for iron ore estimation from a depth of more than 200 m. The laboratory testing has classified alluvium as silty sand/sandy silt (SP-SM/SM) and clayey silt/non-plastic silt (CL-ML/ML) as per soil classification criteria having angel of friction of 31.4 - 38.5 degree with bulk density of 1.461 - 1.853 g/cc. The initial void ratio (eo) varies from 0.412 to 0.952 with no swell potential in consolidation tests. The chemical analyses of the soil have indicated values of 0.003% - 0.006%, 0.0012% - 0.0057%, 0.013% - 0.030% sulphate, chloride and organic matter contents respectively with pH-value of 6.92 - 7.56. The strength of the underlying rock was found to be medium strong to very strong corresponding to values of 25 - 140 MPa in uniaxial compression and indirect tensile strength of 15.66 MPa. Hydrological study reveals that aquifer is unconfined and generally isotropic in nature. The average transmissivity, hydraulic conductivity and storage coefficient are 6038 m2/day, 4.0 × 101 m/day and 0.016, respectively that presented aquifer is quite permeable. The cone of influence covered area of 65 m from main production well. For the open pit mining operation, stability analysis is performed by assuming a 4V:1H slope in the bedrock while 1V:1H in the overlying sediments cover using Limit-Equilibrium (LE) analysis in Slide computer program. However, overburden slope was concluded to be unstable with the analyzed slope angle. The deformation analysis for mine slopes by finite element method was performed using Phase 2 (RS) software. The results show maximum deformation is likely to be in order of as high as 700 mm for individual slope riser whereas in the range of 300 to 400 mm for the overall slope.展开更多
Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is rela...Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is related mainly to the activity of Iron Reducing Bacteria in the rice field’s ecosystems. In order to control the harmful effects of Iron Reducing Bacterial populations and to improve rice productivity, a pots experiment was conducted at the experimental site of the University Ouaga I Pr. Joseph KI-ZERBO. An iron toxic soil from Kou Valley (West of Burkina Faso) and two rice varieties, BOUAKE-189 and ROK-5, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were drained for 14 days (D2) and amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complexes). Control pots without drainage and fertilization (D0/NF) were prepared similarly. The kinetics of Iron Reducing Bacterial populations and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using a spectrometric method. Data obtained were analyzed in relation to drainage and fertilization mode, rice growth stage and rice yield using the Student’s t-test and XLSTAT 2014 statistical software. The experiment showed that the combined application of subsurface drainage and NPK + Urea + Ca + Mg + Zn fertilization, reduced significantly the number of IRB in the soil near rice roots for both rice varieties (p = 0.050 and p = 0.020) increased the leaf tissue tolerance to excess amounts of Fe, and rice yield.展开更多
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S...Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.展开更多
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud...Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.展开更多
A method for fluid identification(water,oil,gas or CO_(2))and saturation estimation in subsurface rock formations using the prestack inverted Seismic by calculating the target fluid saturation(Sfl)(114)in a reservoir ...A method for fluid identification(water,oil,gas or CO_(2))and saturation estimation in subsurface rock formations using the prestack inverted Seismic by calculating the target fluid saturation(Sfl)(114)in a reservoir given the magnitude obtained from the Pto S-wave velocity ratio(Vp/Vs)(103),and acoustic impedance(AI)(102)extracted from the seismic data inversion,comprising the following steps:(a)obtaining wireline log data within a zone of interest in a nearby well(101)and determining the suitable cementation and mineralogy factors by calibrating the background water-bearing sand trend with the reference 0%(or 0 fraction)Sfl curve onto the acoustic impedance-Vp/Vs ratio plane(110),(b)calibrating Sfl computed from the acoustic impedance-Vp/Vs ratio curves with Sfl obtained from a conventional method by iterating P-wave velocity(Vpf)and density(ρfl)of the target fluid(111).展开更多
We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of...We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.展开更多
A molecular dynamics (MD) simulation is carried out to analyze the effect of cutting edge radius,cutdepth, and grinding speed on the depth of subsurface damage layers in monocrystal silicon grinding processes on an ...A molecular dynamics (MD) simulation is carried out to analyze the effect of cutting edge radius,cutdepth, and grinding speed on the depth of subsurface damage layers in monocrystal silicon grinding processes on an atomic scale. The results show that when the cutting edge radius decreases in the nanometric grinding process with the same cut-depth and grinding speed, the depth of the damage layers and the potential energy between the silicon atoms decrease too. Also, when the cut depth increases, both the depth of the damage layers and the potential energy between silicon atoms increase. When the grinding speed is between 20 and 200m/s,the depth of the damage layers does not change much with the increase of the grinding speed under the same cutting edge radius and cut depth conditions. This means that the MD simulation is not sensitive to changes in the grinding speed, and thus increasing the grinding speed properly can shorten the sion,the subsurface damage of monocrystal silicon is silicon atoms, which is verified by the ultra-precision simulation time and enlarge the simulation scale. In conclumainly based on the change of the potential energy between grinding and CMP experiments.展开更多
The aims of this research were to compare subsurface drip irrigation scheduling and nitrogen fertilization rates in cucumber, and evaluate yield and quality of cucumber fruit, water (WUE), irrigation water (IWUE),...The aims of this research were to compare subsurface drip irrigation scheduling and nitrogen fertilization rates in cucumber, and evaluate yield and quality of cucumber fruit, water (WUE), irrigation water (IWUE), and nitrogen use (NUE) efficiencies in the solar greenhouse in Southwest China. The irrigation water amounts were determined based on the 20 cm diameter pan (Ep) placed over the crop canopy, and cucumber plant was subjected to three irrigation water levels (I1, 0.6 Ep; I2, 0.8 Ep; and I3, 1.0 Ep) in interaction with three nitrogen fertilization levels (N1, 300 kg ha-1; N2, 450 kg ha-1; and N3, 600 kg ha-1). The results showed that the cucumber fruit yield increased with the improvement of irrigation water. Irrigation water increased yields by increasing the mean weight of the fruits, and also by increasing fruit number. But the highest values of IWUE and WUE were obtained from I2 treatment. NUE significantly decreased with the improvement of N application, but increased by irrigating more water. The quality of cucumber fruit decreased with the improvement irrigation water and nitrogen fertilization. In conclusion, the optimum irrigation level and nitrogen fertilizer application level for cucunber under subsurface drip irrigation in the solar greenhouse in Southwest China were 0.8 Ep and 450 and 600 kg ha-1, respectively.展开更多
Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation schedulin...Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion (MAD) designed for different treatments (-10, -16,-25,-40, and-63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16 kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast, the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.展开更多
The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. ...The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m 3/d, and the actual influent flow is in the range of <2000 to >10000 m 3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard(GB 8978\_1996), with the following parameters(mean values): COD 33 90 mg/L, BOD 5 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0 56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.展开更多
Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the res...Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.展开更多
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was...A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...展开更多
Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined ...Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined part. To manu?facture a high quality part,it is necessary to detect and remove the machining induced subsurface damage by the subsequent processes. However,subsurface damage is often covered with a smearing layer generated in a machining process,it is rather di cult to directly observe and detect by optical microscopy. An e cient detection of subsur?face damage directly leads to quality improvement and time saving for machining of hard and brittle materials. This paper presents a review of the methods for detection of subsurface damage,both destructive and non?destructive. Although more reliable,destructive methods are typically time?consuming and confined to local damage infor?mation. Non?destructive methods usually su er from uncertainty factors,but may provide global information on subsurface damage distribution. These methods are promising because they can provide a capacity of rapid scan and detection of subsurface damage in spatial distribution.展开更多
CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The...CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin (Fuco) and chlorophyll a (Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribu- tion to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Dia- toms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass.展开更多
Single-crystal silicon is an important material in the semiconductor and optical industries.However,being hard and brittle,a silicon wafer is vulnerable to subsurface cracks(SSCs)during grinding,which is detrimental t...Single-crystal silicon is an important material in the semiconductor and optical industries.However,being hard and brittle,a silicon wafer is vulnerable to subsurface cracks(SSCs)during grinding,which is detrimental to the performance and lifetime of a wafer product.Therefore,studying the formation of SSCs is important for optimizing SSC-removal processes and thus improving surface integrity.In this study,a statistical method is used to study the formation of SSCs induced during grinding of silicon wafers.The statistical results show that grinding-induced SSCs are not stochastic but anisotropic in their distributions.Generally,when grinding with coarse abrasive grains,SSCs form along the cleavage planes,primarily the{111}planes.However,when grinding with finer abrasive grains,SSCs tend to form along planes with a fracture-surface energy higher than that of the cleavage planes.These findings provide a guidance for the accurate detection of SSCs in ground silicon wafers.展开更多
In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results sh...In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.展开更多
China's Mars probe,named Tianwen-1,including an orbiter and a landing rover,will be launched during the July-August 2020 Mars launch windows.Selected to be among the rover payloads is a Subsurface Penetrating Rada...China's Mars probe,named Tianwen-1,including an orbiter and a landing rover,will be launched during the July-August 2020 Mars launch windows.Selected to be among the rover payloads is a Subsurface Penetrating Radar module(RoSPR).The main scientific objective of the RoSPR is to characterize the thickness and sub-layer distribution of the Martian soil.The RoSPR consists of two channels.The low frequency channel of the RoSPR will penetrate the Martian soil to depths of 10 to 100 m with a resolution of a few meters.The higher frequency channel will penetrate to a depth of 3 to 10 m with a resolution of a few centimeters.This paper describes the design of the instrument and some results of field experiments.展开更多
文摘The methods of deriving FeO and TiO_(2)contents from the Clementine spacecraft data were discussed,and an approach was developed to derive the content from the measurements using the Moon Mineralogy Mapper(M3)instrument on Chandrayaan-1.The density of lunar bedrock was then modeled on the basis of the derived FeO and TiO_(2)abundances.The FeO and TiO_(2)abundances derived from the M^(3)data were compared with the previous results of the Clementine data and were in good agreement.The FeO abundance data also agreed well with the Lunar Prospector data,which were used as an independent source.The previous Clementine and newly M3 derived abundances were compared with the laboratory measured FeO and TiO2 contents in the Apollo and Luna returned samples.The Clementine derived FeO content was systematically 1%–2%lower than the laboratory measurements in all the returned samples.The M^(3)derived content agreed well with the returned Apollo samples and was within±2.8%of the laboratory measurements.The Clementine derived TiO2 abundance was systematically 0.1%–4%higher than the laboratory measurements of the returned samples.The M3 derived TiO_(2)agreed well(±0.6%)with the laboratory measurements of the returned samples,except for samples with high TiO2 content.However,these results should be carefully interpreted because the error range requires verification.No error analysis was provided with the previous Clementine derived contents.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51538001 and 51978019).
文摘This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
文摘The study area is covered by alluvium having average thickness of about 200 m that is underlain by the Precambrian basement rock units including iron ore to be mined in future. In this regards, necessary campaign of subsurface investigations including both geotechnical and hydrogeological has been carried. In geotechnical investigations, disturbed and undisturbed samples were collected from five (5) boreholes and hydrological investigations by using water pump out test were conducted to determine the characteristics of aquifer. Rock samples were also collected from already drilled boreholes for iron ore estimation from a depth of more than 200 m. The laboratory testing has classified alluvium as silty sand/sandy silt (SP-SM/SM) and clayey silt/non-plastic silt (CL-ML/ML) as per soil classification criteria having angel of friction of 31.4 - 38.5 degree with bulk density of 1.461 - 1.853 g/cc. The initial void ratio (eo) varies from 0.412 to 0.952 with no swell potential in consolidation tests. The chemical analyses of the soil have indicated values of 0.003% - 0.006%, 0.0012% - 0.0057%, 0.013% - 0.030% sulphate, chloride and organic matter contents respectively with pH-value of 6.92 - 7.56. The strength of the underlying rock was found to be medium strong to very strong corresponding to values of 25 - 140 MPa in uniaxial compression and indirect tensile strength of 15.66 MPa. Hydrological study reveals that aquifer is unconfined and generally isotropic in nature. The average transmissivity, hydraulic conductivity and storage coefficient are 6038 m2/day, 4.0 × 101 m/day and 0.016, respectively that presented aquifer is quite permeable. The cone of influence covered area of 65 m from main production well. For the open pit mining operation, stability analysis is performed by assuming a 4V:1H slope in the bedrock while 1V:1H in the overlying sediments cover using Limit-Equilibrium (LE) analysis in Slide computer program. However, overburden slope was concluded to be unstable with the analyzed slope angle. The deformation analysis for mine slopes by finite element method was performed using Phase 2 (RS) software. The results show maximum deformation is likely to be in order of as high as 700 mm for individual slope riser whereas in the range of 300 to 400 mm for the overall slope.
文摘Rice is one of the staple crops in Burkina Faso. However, the local production covers only 47% of the population demands. One of the main reasons of the poor productivity in Burkina Faso is iron toxicity which is related mainly to the activity of Iron Reducing Bacteria in the rice field’s ecosystems. In order to control the harmful effects of Iron Reducing Bacterial populations and to improve rice productivity, a pots experiment was conducted at the experimental site of the University Ouaga I Pr. Joseph KI-ZERBO. An iron toxic soil from Kou Valley (West of Burkina Faso) and two rice varieties, BOUAKE-189 and ROK-5, sensitive and tolerant to iron toxicity, respectively, were used for the experiment. The pots were drained for 14 days (D2) and amended with chemical fertilizers (NPK + Urea and NPK + Urea + Ca + Mg + Zn complexes). Control pots without drainage and fertilization (D0/NF) were prepared similarly. The kinetics of Iron Reducing Bacterial populations and ferrous iron content in soil near rice roots were monitored throughout the cultural cycle using MPN and colorimetric methods, respectively. The total iron content was evaluated in rice plant using a spectrometric method. Data obtained were analyzed in relation to drainage and fertilization mode, rice growth stage and rice yield using the Student’s t-test and XLSTAT 2014 statistical software. The experiment showed that the combined application of subsurface drainage and NPK + Urea + Ca + Mg + Zn fertilization, reduced significantly the number of IRB in the soil near rice roots for both rice varieties (p = 0.050 and p = 0.020) increased the leaf tissue tolerance to excess amounts of Fe, and rice yield.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060201)the National Natural Science Foundation of China(Grant No.42067046)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10).
文摘Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.
基金funded by the National Natural Science Foundation of China(42371022,42030501,41877148).
文摘Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research.
文摘A method for fluid identification(water,oil,gas or CO_(2))and saturation estimation in subsurface rock formations using the prestack inverted Seismic by calculating the target fluid saturation(Sfl)(114)in a reservoir given the magnitude obtained from the Pto S-wave velocity ratio(Vp/Vs)(103),and acoustic impedance(AI)(102)extracted from the seismic data inversion,comprising the following steps:(a)obtaining wireline log data within a zone of interest in a nearby well(101)and determining the suitable cementation and mineralogy factors by calibrating the background water-bearing sand trend with the reference 0%(or 0 fraction)Sfl curve onto the acoustic impedance-Vp/Vs ratio plane(110),(b)calibrating Sfl computed from the acoustic impedance-Vp/Vs ratio curves with Sfl obtained from a conventional method by iterating P-wave velocity(Vpf)and density(ρfl)of the target fluid(111).
文摘We present an improved angle polishing method in which the end of the cover slice near the glue layer is beveled into a thin,defect-free wedge,the straight edge of which is used as the datum for measuring the depth of subsurface damage. The bevel angle can be calculated from the interference fringes formed in the wedge. The minimum depth of the subsurface damage that can be measured by this method is a few hundred nanometers. Our results show that the method is straightforward, accurate, and convenient.
文摘A molecular dynamics (MD) simulation is carried out to analyze the effect of cutting edge radius,cutdepth, and grinding speed on the depth of subsurface damage layers in monocrystal silicon grinding processes on an atomic scale. The results show that when the cutting edge radius decreases in the nanometric grinding process with the same cut-depth and grinding speed, the depth of the damage layers and the potential energy between the silicon atoms decrease too. Also, when the cut depth increases, both the depth of the damage layers and the potential energy between silicon atoms increase. When the grinding speed is between 20 and 200m/s,the depth of the damage layers does not change much with the increase of the grinding speed under the same cutting edge radius and cut depth conditions. This means that the MD simulation is not sensitive to changes in the grinding speed, and thus increasing the grinding speed properly can shorten the sion,the subsurface damage of monocrystal silicon is silicon atoms, which is verified by the ultra-precision simulation time and enlarge the simulation scale. In conclumainly based on the change of the potential energy between grinding and CMP experiments.
基金supported by the Innovation Capability Special Fund in Guizhou Province, China (KY-2010N-004)
文摘The aims of this research were to compare subsurface drip irrigation scheduling and nitrogen fertilization rates in cucumber, and evaluate yield and quality of cucumber fruit, water (WUE), irrigation water (IWUE), and nitrogen use (NUE) efficiencies in the solar greenhouse in Southwest China. The irrigation water amounts were determined based on the 20 cm diameter pan (Ep) placed over the crop canopy, and cucumber plant was subjected to three irrigation water levels (I1, 0.6 Ep; I2, 0.8 Ep; and I3, 1.0 Ep) in interaction with three nitrogen fertilization levels (N1, 300 kg ha-1; N2, 450 kg ha-1; and N3, 600 kg ha-1). The results showed that the cucumber fruit yield increased with the improvement of irrigation water. Irrigation water increased yields by increasing the mean weight of the fruits, and also by increasing fruit number. But the highest values of IWUE and WUE were obtained from I2 treatment. NUE significantly decreased with the improvement of N application, but increased by irrigating more water. The quality of cucumber fruit decreased with the improvement irrigation water and nitrogen fertilization. In conclusion, the optimum irrigation level and nitrogen fertilizer application level for cucunber under subsurface drip irrigation in the solar greenhouse in Southwest China were 0.8 Ep and 450 and 600 kg ha-1, respectively.
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (No. 2002AA2Z4321) and the Key Project of Water-Saving Irrigation and Cultivation Techniques of Liaoning Province of China (No. 2001212001).
文摘Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion (MAD) designed for different treatments (-10, -16,-25,-40, and-63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16 kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast, the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.
文摘The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m 3/d, and the actual influent flow is in the range of <2000 to >10000 m 3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard(GB 8978\_1996), with the following parameters(mean values): COD 33 90 mg/L, BOD 5 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0 56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.
基金Project supported by the Chinese Academy of Sciences (CAS) (No. KZCX-SW-416-02), and the K. C. Wong Post Doctoral Research Award Fund of CAS (No. 29, 2002).
文摘Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.
基金The authors are grateful to"Chemical Grid Project"of Beijing University of Chemical Technology for providingthe computer facilities.
文摘A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr...
基金Supported by National Natural Science Foundation of China(Grant No.51575084)the Science Fund for Creative Research Groups of NSFC(Grant No.51621064)the Science Challenge Project(Grant No.JCKY2016212A506–0101)
文摘Subsurface damage is easily induced in machining of hard and brittle materials because of their particular mechani?cal and physical properties. It is detrimental to the strength,performance and lifetime of a machined part. To manu?facture a high quality part,it is necessary to detect and remove the machining induced subsurface damage by the subsequent processes. However,subsurface damage is often covered with a smearing layer generated in a machining process,it is rather di cult to directly observe and detect by optical microscopy. An e cient detection of subsur?face damage directly leads to quality improvement and time saving for machining of hard and brittle materials. This paper presents a review of the methods for detection of subsurface damage,both destructive and non?destructive. Although more reliable,destructive methods are typically time?consuming and confined to local damage infor?mation. Non?destructive methods usually su er from uncertainty factors,but may provide global information on subsurface damage distribution. These methods are promising because they can provide a capacity of rapid scan and detection of subsurface damage in spatial distribution.
基金The National Natural Science Foundation of China under contract Nos 41276198,41076135 and 41003036the Scientific Research Fund of Second Institute of Oceanography,SOA under contract Nos JG1323 and JG1023the Chinese Polar Environment Comprehensive Investiga-tion and Assessment Programs under contract Nos 20130403 and 20130304
文摘CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin (Fuco) and chlorophyll a (Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribu- tion to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Dia- toms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass.
基金Financial supports from the National Natural Science Foundation of China (Grants No.51575084)the Science Fund for Creative Research Groups of NSFC (Grants No.51621064) are gratefully acknowledged
文摘Single-crystal silicon is an important material in the semiconductor and optical industries.However,being hard and brittle,a silicon wafer is vulnerable to subsurface cracks(SSCs)during grinding,which is detrimental to the performance and lifetime of a wafer product.Therefore,studying the formation of SSCs is important for optimizing SSC-removal processes and thus improving surface integrity.In this study,a statistical method is used to study the formation of SSCs induced during grinding of silicon wafers.The statistical results show that grinding-induced SSCs are not stochastic but anisotropic in their distributions.Generally,when grinding with coarse abrasive grains,SSCs form along the cleavage planes,primarily the{111}planes.However,when grinding with finer abrasive grains,SSCs tend to form along planes with a fracture-surface energy higher than that of the cleavage planes.These findings provide a guidance for the accurate detection of SSCs in ground silicon wafers.
基金supported by the National Natural Science Foundation of China(Grant No.51108275)the Program for Liaoning Excellent Talents in Universities(LNET)(Grant No.LJQ2012101)+2 种基金the Program for New Century Excellent Talents in Universities(Grant No.NCET-11-1012)the Science and Technology Program of Liaoning Province(Grants No.2011229002 and2013229012)the Basic Science Research Fund in Northeastern University(Grants No.N130501001 and N140105003)
文摘In order to enhance the hydraulic loading rate (HLR) of a subsurface wastewater infiltration system (SWIS) used in treating domestic sewage, the intermittent operation mode was employed in the SWIS. The results show that the intermittent operation mode contributes to the improvement of the HLR and the pollutant removal rate. When the wetting-drying ratio (RwD) was 1.0, the pollutant removal rate increased by (13.6 ± 0.3)% for NH3-N, (20.7 ± 1.1)% for TN, (18.6± 0.4)% for TP, (12.2 ± 0.5)% for BOD, (10.1 ± 0.3)% for COD, and (36.2 ± 1.2)% for SS, compared with pollutant removal rates under the continuous operation mode. The pollutant removal rate declined with the increase of the HLR. The effluent quality met The Reuse of Urban Recycling Water - Water Quality Standard for Scenic Environment Use (GB/T 18921-2002) even when the HLR was as high as 10 cm/d. Hydraulic conductivity, oxidation reduction potential (ORP), the quantity of nitrifying bacteria, and the pollutant removal rate of NH3-N increased with the decrease of the RWD. For the pollutant removal rates of TP, BOD, and COD, there were no significant difference (p 〈 0.05) under different RwDS. The suggested RWD was 1.0. Relative contribution of the pretreatment and SWlS to the pollutant removal was examined, and more than 80% removal of NH3-N, TN, TP, COD, and BOD occurred in the SWIS.
基金support from the China National Space Administration.
文摘China's Mars probe,named Tianwen-1,including an orbiter and a landing rover,will be launched during the July-August 2020 Mars launch windows.Selected to be among the rover payloads is a Subsurface Penetrating Radar module(RoSPR).The main scientific objective of the RoSPR is to characterize the thickness and sub-layer distribution of the Martian soil.The RoSPR consists of two channels.The low frequency channel of the RoSPR will penetrate the Martian soil to depths of 10 to 100 m with a resolution of a few meters.The higher frequency channel will penetrate to a depth of 3 to 10 m with a resolution of a few centimeters.This paper describes the design of the instrument and some results of field experiments.