We consider a composite system:an anisotropic two-qubit Heisenberg XY Z chain coupled independently to their own environments.We take one of the qubit as the subsystem and the other qubit as an auxiliary qubit,and the...We consider a composite system:an anisotropic two-qubit Heisenberg XY Z chain coupled independently to their own environments.We take one of the qubit as the subsystem and the other qubit as an auxiliary qubit,and then the subsystem we concern can be considered to be coupled to a structured bath(auxiliary qubit + environments).Based on this,we study the non-Markovianity of the subsystem dynamics and show how the subsystem dynamics can be changed by manipulating the intensity of the qubit-qubit couplings or the anisotropy parameter.Moreover,we show how entanglement between the subsystem and the structured bath can be affected by the properties of the structured bath and the magnetic field.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274043 and 11375025
文摘We consider a composite system:an anisotropic two-qubit Heisenberg XY Z chain coupled independently to their own environments.We take one of the qubit as the subsystem and the other qubit as an auxiliary qubit,and then the subsystem we concern can be considered to be coupled to a structured bath(auxiliary qubit + environments).Based on this,we study the non-Markovianity of the subsystem dynamics and show how the subsystem dynamics can be changed by manipulating the intensity of the qubit-qubit couplings or the anisotropy parameter.Moreover,we show how entanglement between the subsystem and the structured bath can be affected by the properties of the structured bath and the magnetic field.