Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relatio...Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relationship between root morphology,subtending leaf physiology,and fiber quality of contrasting N-efficient cotton genotypes in response to N.Methods:We analyzed the above parameters of CCRI 69(N-efficient)and Xinluzao-30(XLZ-30,N-inefficient)under control(2.5 mmol·L^(-1))and high N(5 mmol·L^(-1))conditions.Results:The results showed that root morphological traits were increased in CCRI-69 under control conditions than high N.Subtending leaf morphology,chlorophyll and carotenoid contents,free amino acids,and soluble proteins were higher under high N as compared with the control.However,soluble sugars,fructose,sucrose contents,and sucrose phosphate synthase were higher under control conditions than high N across the growth stages.Irrespective of the N conditions,all morphological and physiological traits of cotton subtending leaf were higher in CCRI-69 than XLZ-30.Except for fiber uniformity,fiber quality traits like fiber length,strength,micronaire,and elongation were improved under control conditions than high N.Between the genotypes,CCRI-69 had significantly higher fiber length,strength,micronaire,and elongation as compared with XLZ-30.Strong positive correlations were found between root morphology,soluble sugars,sucrose content,and sucrose phosphate synthase activity with fiber quality traits,respectively.Conclusions:These findings suggest that CCRI-69 performed better in terms of growth and fiber quality under relatively low N condition,which will help to reduce fertilizer use,the cost of production,and environmental pollution.展开更多
Nitrogen(N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength,and its relationship with activities of key enzymes(sucrose synthase and β-1,3-glucan...Nitrogen(N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength,and its relationship with activities of key enzymes(sucrose synthase and β-1,3-glucanase) and contents of key constituents(sucrose and β-1,3-glucan) involved in fiber strength development in the lower,middle and upper fruiting branches of two cotton cultivars(Kemian 1 and NuCOTN 33B).For each sampling day,we simulated changes in fiber strength,activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.;the optimal subtending leaf N concentrations were deduced from the eqs.For the same fruiting branch,changes in the optimal leaf N concentration based on fiber development(DPA) could be simulated by power functions.From these functions,the average optimal subtending leaf N concentrations during fiber development for the cultivar,Kemian 1,were 2.84% in the lower fruiting branches,3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches.For the cultivar,NuCOTN 33B,the optimum concentrations were 3.04,3.28 and 3.18% in the lower,middle and upper fruiting branches,respectively.This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower,middle and upper fruiting branches.展开更多
基金the financial support from the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS),Cotton Research Institute,CAAS,Central Level Public Welfare Scientific Institutes Basic Research and Business Special Funding Project(Grant No.1610162021025)the State Key Laboratory of Cotton Biology,Institute of Cotton Research of CAAS(CB2021C10).
文摘Background:Nitrogen(N)is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking.Aims:The current study aimed to explore the relationship between root morphology,subtending leaf physiology,and fiber quality of contrasting N-efficient cotton genotypes in response to N.Methods:We analyzed the above parameters of CCRI 69(N-efficient)and Xinluzao-30(XLZ-30,N-inefficient)under control(2.5 mmol·L^(-1))and high N(5 mmol·L^(-1))conditions.Results:The results showed that root morphological traits were increased in CCRI-69 under control conditions than high N.Subtending leaf morphology,chlorophyll and carotenoid contents,free amino acids,and soluble proteins were higher under high N as compared with the control.However,soluble sugars,fructose,sucrose contents,and sucrose phosphate synthase were higher under control conditions than high N across the growth stages.Irrespective of the N conditions,all morphological and physiological traits of cotton subtending leaf were higher in CCRI-69 than XLZ-30.Except for fiber uniformity,fiber quality traits like fiber length,strength,micronaire,and elongation were improved under control conditions than high N.Between the genotypes,CCRI-69 had significantly higher fiber length,strength,micronaire,and elongation as compared with XLZ-30.Strong positive correlations were found between root morphology,soluble sugars,sucrose content,and sucrose phosphate synthase activity with fiber quality traits,respectively.Conclusions:These findings suggest that CCRI-69 performed better in terms of growth and fiber quality under relatively low N condition,which will help to reduce fertilizer use,the cost of production,and environmental pollution.
基金funded by the National Natural Science Foundation of China (30771277, 30771279)
文摘Nitrogen(N) fertilizer experiments were conducted to investigate the optimal subtending leaf N concentration for fiber strength,and its relationship with activities of key enzymes(sucrose synthase and β-1,3-glucanase) and contents of key constituents(sucrose and β-1,3-glucan) involved in fiber strength development in the lower,middle and upper fruiting branches of two cotton cultivars(Kemian 1 and NuCOTN 33B).For each sampling day,we simulated changes in fiber strength,activity of sucrose synthase and β-1,3-glucanase and levels of sucrose and β-1,3-glucan in response to leaf N concentration using quadratic eqs.;the optimal subtending leaf N concentrations were deduced from the eqs.For the same fruiting branch,changes in the optimal leaf N concentration based on fiber development(DPA) could be simulated by power functions.From these functions,the average optimal subtending leaf N concentrations during fiber development for the cultivar,Kemian 1,were 2.84% in the lower fruiting branches,3.15% in the middle fruiting branches and 3.04% in the upper fruiting branches.For the cultivar,NuCOTN 33B,the optimum concentrations were 3.04,3.28 and 3.18% in the lower,middle and upper fruiting branches,respectively.This quantification may be used as a monitoring index for evaluating fiber strength and its related key enzymes and constituents during fiber formation at the lower,middle and upper fruiting branches.