The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relat...The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.展开更多
The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing sim...The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geo-physical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40?N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.展开更多
The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North ...The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.展开更多
Mode Water’, as a product of air-sea interaction, influences the thermal structure and circulation pattern in upper layer ocean and consequently affects the variations of climate. In this paper the recent research re...Mode Water’, as a product of air-sea interaction, influences the thermal structure and circulation pattern in upper layer ocean and consequently affects the variations of climate. In this paper the recent research results about the subtropi-cal Mode Water in the North Pacific are overiewed. A detailed description of the three kinds of Mode Water in the subtropical North Pacific and some comparisons of their similarities and differences are introduced. Some science problems that need further exploration have been raised.展开更多
Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process ...Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process of the North Pacific Subtropical Mode Water (NPSTMW) is presented for explaining the well known 'Stommel Demon'. The forming of NPSTMW reflects well the ventilation process of the isotherms of the permanent thermocline. The formation process can be divided into the 'ventilation' phase and the 'formation' phase. In the first phase (October-March), with large heat losses at the sea surface from October, the mixed layer deepens and correspondingly, the water mass with low PV emerges and sinks. After continual cooling from October to March, the mixed layer reaches its maximum value ( >300 m) in March. Then, in the second phase (April-June), the mixed layer shoals rapidly from April, a large part of the low PV water mass is sheltered from further air-sea interaction by the emerging seasonal thermocline, and thus forms new NPSTMW. Further analysis indicates that the formation region of warm NPSTMW (17-18℃) is limited between 140°-150°E, while the relatively cold NPSTMW (16-17℃) originates in a wider longitude range (140°-170°E).Climate features of NPSTMW are presented with the use of climatological Levitus (1994 a, b) dataset. It is shown that NPSTMW lies in the region of (130°-170°E, 22°-34°N) with core temperature ranging from about 16-19℃ and potential density around 25-25.8σθ NPSTMW has a three-dimensional structure lying below the seasonal thermocline (about 100 m deep) and reaches almost to 350m depths.展开更多
This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanni...This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010.Results show that the subduction induced by mesoscale eddies accounts for about 31%of the total subduction of ESTMW formation.The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies.The ESTMW trapped by all eddies in May reaches up to about 2.8×1013m3,which is approximately 16%of the total ESTMW volume.The eddy-trapped ESTMW moves primarily westward,with its meridional integration at 18°–30°N reaching about 0.17Sv,which is approximately 18%of the total zonal ESTMW transport in this direction,at 140°W.This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean.展开更多
Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develo...Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develops,we investigated the water column carbonate system,dissolved inorganic radiocarbon and ancillary parameters in May and August 2018,spanning the Kuroshio Extension(KE,35-39°N),Kuroshio Recirculation(KR,27-35°N)and subtropical(21-27°N)zones.Water column CANT inventories were estimated to be 40.5±1.1 mol m^(-2) in the KR zone and 37.2±0.9 mol m^(-2) in the subtropical zone.In comparison with historical data obtained in 2005,relatively high rates of increase of the CANT inventory of 1.05±0.20 and 1.03±0.12 mol m^(-2) yr^(-1) in the recent decade were obtained in the KR and subtropical zones,respectively.Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration,storage,and redistribution of CANT in those two regions.In the KE zone,however,both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology,where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow.The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution,storage,and transport in the western North Pacific.展开更多
An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interi...An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interim reanalysis.The East Asian warming anomalies were primarily attributed to a tripole mode of North Atlantic SST anomalies,which could have triggered anomalous Rossby wave trains over the North Atlantic and Eurasia through modulating the North Atlantic baroclinic instability.Atlantic-forced Rossby waves tend to propagate eastward and induce anomalously high pressure and anticyclonic activity over East Asia,leading to a northward displacement of the Pacific subtropical high.As a result,descending motion,reduced precipitation,and increased surface solar radiation due to less cloud cover appear over East Asia,accompanied by remarkably warm advection from the ocean to southern China,northern China,and Japan.The transportation of anomalously warm advection and the feedbacks between soil moisture and surface temperature were both favorable for the recordbreaking warmth in East Asia during spring 2018.The seasonal‘memory’of the North Atlantic tripole SST mode from the previous winter to the following spring may provide useful implications for the seasonal prediction of East Asian weather and climate.展开更多
As the primary interannual signal of variability in the tropical ocean-atmosphere interaction, the El Ni?o-Southern Oscillation has a considerable impact on tropical cyclone(TC) activity over the western North Pacific...As the primary interannual signal of variability in the tropical ocean-atmosphere interaction, the El Ni?o-Southern Oscillation has a considerable impact on tropical cyclone(TC) activity over the western North Pacific(WNP). Both 2018 and2021 were La Ni?a decay years, but TC activity over the WNP during the two summers(June–August) showed notable differences. In 2018, summer TC activity was unusually high with a total of 18 TCs, and the region of TC genesis was mainly in the central and eastern WNP. In contrast, only 9 TCs were generated in summer 2021, and the region of TC genesis was primarily in the western WNP. By comparing the characteristics of the large-scale environmental conditions over the regions of TC genesis, the thermal factors of the tropical oceans, and the activity of the Madden-Julian Oscillation(MJO), this study revealed the possible causes for the marked differences in TC genesis over the WNP during the two summers, which both had a similar background of La Ni?a decay. The Indian Ocean Basin Mode(IOBM) transitioned of a cold anomaly in the winter of 2017/2018and persisted until summer 2018. At the same time, the Pacific Meridional Mode(PMM) maintained a positive phase, leading to eastward and northward displacement of the Western Pacific Subtropical High in summer, and eastward extension of the tropical monsoon trough, which presented conditions conducive to TC genesis over the Northwest Pacific. Moreover, the days when the MJO stagnated in phases 5 and 6 in the summer of 2018 increased by approximately 150% relative to climatological state,providing dynamic conditions favorable for TC formation. In 2021, the IOBM quickly turned to a warm anomaly in March and persisted until summer, whereas the PMM became a negative phase in January and remained so until summer. At the same time,the MJO stagnated in phases 2 and 3 for up to 47 days, with the center of convection located over the western Maritime Continent, producing conditions unconducive to TC genesis over the Northwest Pacific. Thus, despite being under a similar background of La Ni?a decaying year, the distinct evolutions of the IOBM, PMM, and MJO in spring and summer of 2018 and2021 were the main causes of the notable differences in TC activity over the WNP during these two summers, and the anomalies in IOBM and MJO contributed more significantly than those of the PMM.展开更多
On the interannual timescale, the meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) is significantly associated with the rainfall anomalies in East Asia in summer. In this study, using the...On the interannual timescale, the meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) is significantly associated with the rainfall anomalies in East Asia in summer. In this study, using the data from the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) reanalysis-2 from 1979 to 2002, the authors investigate the interannual variations of the EAJS's meridional displacement in summer and their associations with the variations of the South Asian high (SAH) and the western North Pacific subtropical high (WNPSH), which are dominant circulation features in the upper and lower troposhere, respectively. The result from an EOF analysis shows that the meridional displacement is the most remarkable feature of the interannual variations of the EAJS in each month of summer and in summer as a whole. A composite analysis indicates that the summer (June-July-August, JJA) EAJS index, which is intended to depict the interannual meridional displacement of the EAJS, is not appropriate because the anomalies of the zonal wind at 200 hPa (U200) in July and August only, rather than in June, significantly contribute to the summer EAJS index. Thus, the index for each month in summer is defined according to the location of the EAJS core in each month. Composite analyses based on the monthly indexes show that corresponding to the monthly equatorward displacement of the EAJS, the South Asian high (SAH) extends southeastward clearly in July and August, and the western North Pacific subtropical high (WNPSH) withdraws southward in June and August.展开更多
The oceanic meridional volume trans-port (MVT) in the North Subtropical Pacific is calcu-lated directly from an observed velocity field (realMVT) and indirectly from wind stress based on Sver-drup balance, respectivel...The oceanic meridional volume trans-port (MVT) in the North Subtropical Pacific is calcu-lated directly from an observed velocity field (realMVT) and indirectly from wind stress based on Sver-drup balance, respectively. It is confirmed that theSverdrup MVT is a good approximation to the realMVT for the North Subtropical Pacific except in thewestern boundary region, where the difference isexpected because of frictional and nonlinear effects.The time evolution of the MVT derived from a revisedSverdrup balance, in which a time delay due to thepropagation of the first baroclinic Rossby wave isconsidered, is well correlated with that of the realMVT on decadal time scale, especially near thewestern boundary region. It is suggested that theSverdrup balance can be used to study not only themean climatology of the oceanic circulation, but alsothe time-dependent oceanic circulation of the NorthSubtropical Pacific when the Rossby wave propaga-tion is taken into account.展开更多
基金Supported by the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The subtropical North and South Pacific Meridional Modes(NPMM and SPMM)are well known precursors of El Niño-Southern Oscillation(ENSO).However,relationship between them is not constant.In the early 1980,the relationship experienced an interdecadal transition.Changes in this connection can be attributed mainly to the phase change of the Pacific decadal oscillation(PDO).During the positive phase of PDO,a shallower thermocline in the central Pacific is responsible for the stronger trade wind charging(TWC)mechanism,which leads to a stronger equatorial subsurface temperature evolution.This dynamic process strengthens the connection between NPMM and ENSO.Associated with the negative phase of PDO,a shallower thermocline over southeastern Pacific allows an enhanced wind-evaporation-SST(WES)feedback,strengthening the connection between SPMM and ENSO.Using 35 Coupled Model Intercomparison Project Phase 6(CMIP6)models,we examined the NPMM/SPMM performance and its connection with ENSO in the historical runs.The great majority of CMIP6 models can reproduce the pattern of NPMM and SPMM well,but they reveal discrepant ENSO and NPMM/SPMM relationship.The intermodal uncertainty for the connection of NPMM-ENSO is due to different TWC mechanism.A stronger TWC mechanism will enhance NPMM forcing.For SPMM,few models can simulate a good relationship with ENSO.The intermodel spread in the relationship of SPMM and ENSO owing to SST bias in the southeastern Pacific,as WES feedback is stronger when the southeastern Pacific is warmer.
基金supported by the National Basic Research Program of China(2012CB955602)National Key Program for Developing Basic Science(2010CB428904)Natural Science Foundation of China(41176006 and 40921004)
文摘The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geo-physical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40?N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.
基金Supported by the National Natural Science Foundation of China (Nos. 40906005, 40830106, 40730953, GYHY201106017)the National Basic Research Program of China (973 Program) (No. 2010CB428504)the National Key Technologies Research and Development Program of China (No. 2009BAC51B01)
文摘The climatology subduction rate for the entire Pacific is known, but the mechanism of interannual to decadal variation remains unclear. In this study, we calculated the annual subduction rates of three types of North Pacific subtropical mode waters using a general circulation model (LICOM1.0) for the period of 1958-2001. The model experiments focused on interannual variations of ocean dynamical processes under daily wind forcings and seasonal heat fluxes. The mode water formation region was defined by a potential vorticity minimum at outcrop locations. The model results show that two subduction rate maxima (>100 m/a) were located in the Subtropical Mode Water (STMW) and the Central Mode Water (CMW) formation regions. These regions are consistent with a climatologically calculated value. The subduction rate in the Eastern Subtropical Mode Water (ESTMW) formation region was smaller at about 75 m/a. The subduction rate shows clear interannual and decadal variations associated with oceanic dynamic variabilities. The average subduction rate of the STMW was much smaller during the period of 1981-1990 compared with other periods, while that of the CMW had a negative anomaly before 1975 and a positive anomaly after 1978. The variability agreed with Ekman and geostrophic advections and mixed layer depths. The interannual variability of the subduction rate for the ESTMW was smallest during 1970-1990, as a result of a weak wind stress curl. This paper explores how interannual signals from the atmosphere are stored in different parts of the ocean, and thus may contribute to a better understanding of feedback mechanisms for the Pacific Decadal Oscillation (PDO) event.
基金supported by the NSFC(No.49976004 and 40028605)National Key Program for Developing Basic Science(No.G1999043807).
文摘Mode Water’, as a product of air-sea interaction, influences the thermal structure and circulation pattern in upper layer ocean and consequently affects the variations of climate. In this paper the recent research results about the subtropi-cal Mode Water in the North Pacific are overiewed. A detailed description of the three kinds of Mode Water in the subtropical North Pacific and some comparisons of their similarities and differences are introduced. Some science problems that need further exploration have been raised.
基金supported by Free Application(No.40276009)NSFC Project for Oversea Young Scientist Found(No.40028605).
文摘Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process of the North Pacific Subtropical Mode Water (NPSTMW) is presented for explaining the well known 'Stommel Demon'. The forming of NPSTMW reflects well the ventilation process of the isotherms of the permanent thermocline. The formation process can be divided into the 'ventilation' phase and the 'formation' phase. In the first phase (October-March), with large heat losses at the sea surface from October, the mixed layer deepens and correspondingly, the water mass with low PV emerges and sinks. After continual cooling from October to March, the mixed layer reaches its maximum value ( >300 m) in March. Then, in the second phase (April-June), the mixed layer shoals rapidly from April, a large part of the low PV water mass is sheltered from further air-sea interaction by the emerging seasonal thermocline, and thus forms new NPSTMW. Further analysis indicates that the formation region of warm NPSTMW (17-18℃) is limited between 140°-150°E, while the relatively cold NPSTMW (16-17℃) originates in a wider longitude range (140°-170°E).Climate features of NPSTMW are presented with the use of climatological Levitus (1994 a, b) dataset. It is shown that NPSTMW lies in the region of (130°-170°E, 22°-34°N) with core temperature ranging from about 16-19℃ and potential density around 25-25.8σθ NPSTMW has a three-dimensional structure lying below the seasonal thermocline (about 100 m deep) and reaches almost to 350m depths.
基金supported by the National Natural Science Foundation of China (No. 41676002)
文摘This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010.Results show that the subduction induced by mesoscale eddies accounts for about 31%of the total subduction of ESTMW formation.The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies.The ESTMW trapped by all eddies in May reaches up to about 2.8×1013m3,which is approximately 16%of the total ESTMW volume.The eddy-trapped ESTMW moves primarily westward,with its meridional integration at 18°–30°N reaching about 0.17Sv,which is approximately 18%of the total zonal ESTMW transport in this direction,at 140°W.This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean.
基金The research was supported by the National Natural Science Foundation of China(42141001 and 91858210).
文摘Oceanic uptake and storage of anthropogenic CO_(2)(CANT)are regulated by ocean circulation and ventilation.To decipher the storage and redistribution of CANT in the western North Pacific,where a major CANT sink develops,we investigated the water column carbonate system,dissolved inorganic radiocarbon and ancillary parameters in May and August 2018,spanning the Kuroshio Extension(KE,35-39°N),Kuroshio Recirculation(KR,27-35°N)and subtropical(21-27°N)zones.Water column CANT inventories were estimated to be 40.5±1.1 mol m^(-2) in the KR zone and 37.2±0.9 mol m^(-2) in the subtropical zone.In comparison with historical data obtained in 2005,relatively high rates of increase of the CANT inventory of 1.05±0.20 and 1.03±0.12 mol m^(-2) yr^(-1) in the recent decade were obtained in the KR and subtropical zones,respectively.Our water-mass-based analyses suggest that formation and transport of subtropical mode water dominate the deep penetration,storage,and redistribution of CANT in those two regions.In the KE zone,however,both the water column CANT inventory and the decadal CANT accumulation rate were small and uncertain owing to the dynamic hydrology,where the naturally uplifting isopycnal surfaces make CANT penetration relatively shallow.The findings of this study improve the understanding of the spatiotemporal variations of CANT distribution,storage,and transport in the western North Pacific.
基金supported by the National Key Research and Development Program of China [grant number2016YFA0602703]the National Natural Science Foundation of China [grant numbers 41661144019,41690123,41690120,and91637208]+1 种基金the CMA Guangzhou Joint Research Center for Atmospheric Sciencesthe Jiangsu Collaborative Innovation Center for Climate Change
文摘An unusually warm East Asia in spring 2018,when exceptionally high surface air temperatures were recorded in large areas of Asia,such as northern China,southern China,and Japan,was investigated based on the ERA-Interim reanalysis.The East Asian warming anomalies were primarily attributed to a tripole mode of North Atlantic SST anomalies,which could have triggered anomalous Rossby wave trains over the North Atlantic and Eurasia through modulating the North Atlantic baroclinic instability.Atlantic-forced Rossby waves tend to propagate eastward and induce anomalously high pressure and anticyclonic activity over East Asia,leading to a northward displacement of the Pacific subtropical high.As a result,descending motion,reduced precipitation,and increased surface solar radiation due to less cloud cover appear over East Asia,accompanied by remarkably warm advection from the ocean to southern China,northern China,and Japan.The transportation of anomalously warm advection and the feedbacks between soil moisture and surface temperature were both favorable for the recordbreaking warmth in East Asia during spring 2018.The seasonal‘memory’of the North Atlantic tripole SST mode from the previous winter to the following spring may provide useful implications for the seasonal prediction of East Asian weather and climate.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0801604)the National Natural Science Foundation of China (Grant No.42175056)+4 种基金the Provincial Natural Science Foundation of Anhui (Grant No.2208085UQ10)the Civilian Space Programme of China (Grant No.Do40305)the Fengyun Application Pioneering Project (Grant No.FY-APP-ZX-2023.02)the China Meteorological Administration Innovation and Development Project (Grant No.CXFZ2024J048)the China Meteorological Administration Youth Innovation Team (Grant No.CMA2024QN06)。
文摘As the primary interannual signal of variability in the tropical ocean-atmosphere interaction, the El Ni?o-Southern Oscillation has a considerable impact on tropical cyclone(TC) activity over the western North Pacific(WNP). Both 2018 and2021 were La Ni?a decay years, but TC activity over the WNP during the two summers(June–August) showed notable differences. In 2018, summer TC activity was unusually high with a total of 18 TCs, and the region of TC genesis was mainly in the central and eastern WNP. In contrast, only 9 TCs were generated in summer 2021, and the region of TC genesis was primarily in the western WNP. By comparing the characteristics of the large-scale environmental conditions over the regions of TC genesis, the thermal factors of the tropical oceans, and the activity of the Madden-Julian Oscillation(MJO), this study revealed the possible causes for the marked differences in TC genesis over the WNP during the two summers, which both had a similar background of La Ni?a decay. The Indian Ocean Basin Mode(IOBM) transitioned of a cold anomaly in the winter of 2017/2018and persisted until summer 2018. At the same time, the Pacific Meridional Mode(PMM) maintained a positive phase, leading to eastward and northward displacement of the Western Pacific Subtropical High in summer, and eastward extension of the tropical monsoon trough, which presented conditions conducive to TC genesis over the Northwest Pacific. Moreover, the days when the MJO stagnated in phases 5 and 6 in the summer of 2018 increased by approximately 150% relative to climatological state,providing dynamic conditions favorable for TC formation. In 2021, the IOBM quickly turned to a warm anomaly in March and persisted until summer, whereas the PMM became a negative phase in January and remained so until summer. At the same time,the MJO stagnated in phases 2 and 3 for up to 47 days, with the center of convection located over the western Maritime Continent, producing conditions unconducive to TC genesis over the Northwest Pacific. Thus, despite being under a similar background of La Ni?a decaying year, the distinct evolutions of the IOBM, PMM, and MJO in spring and summer of 2018 and2021 were the main causes of the notable differences in TC activity over the WNP during these two summers, and the anomalies in IOBM and MJO contributed more significantly than those of the PMM.
基金This work was supported by the Chinese Academy of Sciences(Grant No.KZCX3 SW-221)the National Natural Science Foundation of China under Grant No.40221503.
文摘On the interannual timescale, the meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) is significantly associated with the rainfall anomalies in East Asia in summer. In this study, using the data from the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) reanalysis-2 from 1979 to 2002, the authors investigate the interannual variations of the EAJS's meridional displacement in summer and their associations with the variations of the South Asian high (SAH) and the western North Pacific subtropical high (WNPSH), which are dominant circulation features in the upper and lower troposhere, respectively. The result from an EOF analysis shows that the meridional displacement is the most remarkable feature of the interannual variations of the EAJS in each month of summer and in summer as a whole. A composite analysis indicates that the summer (June-July-August, JJA) EAJS index, which is intended to depict the interannual meridional displacement of the EAJS, is not appropriate because the anomalies of the zonal wind at 200 hPa (U200) in July and August only, rather than in June, significantly contribute to the summer EAJS index. Thus, the index for each month in summer is defined according to the location of the EAJS core in each month. Composite analyses based on the monthly indexes show that corresponding to the monthly equatorward displacement of the EAJS, the South Asian high (SAH) extends southeastward clearly in July and August, and the western North Pacific subtropical high (WNPSH) withdraws southward in June and August.
基金supported by the National Natural Science Foundation of China(Grant Nos.40406004 and 40490263).
文摘The oceanic meridional volume trans-port (MVT) in the North Subtropical Pacific is calcu-lated directly from an observed velocity field (realMVT) and indirectly from wind stress based on Sver-drup balance, respectively. It is confirmed that theSverdrup MVT is a good approximation to the realMVT for the North Subtropical Pacific except in thewestern boundary region, where the difference isexpected because of frictional and nonlinear effects.The time evolution of the MVT derived from a revisedSverdrup balance, in which a time delay due to thepropagation of the first baroclinic Rossby wave isconsidered, is well correlated with that of the realMVT on decadal time scale, especially near thewestern boundary region. It is suggested that theSverdrup balance can be used to study not only themean climatology of the oceanic circulation, but alsothe time-dependent oceanic circulation of the NorthSubtropical Pacific when the Rossby wave propaga-tion is taken into account.