Background:MiRNAs act as pivotal post-transcriptional gene mediators in the regulation of diverse biological processes,including proliferation,development and apoptosis.Our previous study has showed that miR-101-3p is...Background:MiRNAs act as pivotal post-transcriptional gene mediators in the regulation of diverse biological processes,including proliferation,development and apoptosis.Our previous study has showed that miR-101-3p is differentially expressed in dairy goat ovaries compared single with multiple litters.The objective of this research was to explore the potential function and molecular mechanism of miR-101-3p via its target STC1 in goat ovarian growth and development.Results:cDNA libraries were constructed using goat granulosa cells transfected with miR-101-3p mimics and negative control by RNA-sequencing.In total,142 differentially expressed unigenes(DEGs)were detected between two libraries,including 78 down-regulated and 64 up-regulated genes.GO and KEGG enrichment analysis showed the potential impacts of DEGs on ovarian development.STC1 was singled out from DEGs for further research owing to it regulates reproductive-related processes.In vitro,bioinformatics analysis and 3′-UTR assays confirmed that STC1 was a target of miR-101-3p.ELISA was performed to detect the estrogen(E2)and progesterone(P4)levels.CCK8,EdU and flow cytometry assays were performed to detect the proliferation and apoptosis of granulosa cells.Results showed that miR-101-3p regulated STAR,CYP19A1,CYP11A1 and 3β-HSD steroid hormone synthesis-associated genes by STC1 depletion,thus promoted E2 and P4 secretions.MiR-101-3p also affected the key protein PI3K,PTEN,AKT and mTOR in PI3K-AKT pathway by STC1,thereby suppressing proliferation and promoting apoptosis of granulosa cells.In vivo,the distribution and expression levels of miR-101-3p in mouse ovaries were determined through fluorescence in situ hybridisation(FISH).Immunohistochemistry results showed that STC1 expression was suppressed in mouse ovaries in miR-101-3p-agonist and siRNA-STC1 groups.Small and stunted ovarian fragments,decreased numbers of follicles at diverse stages were observed using Hematoxylin-eosin(HE)staining,thereby showing unusual ovarian development after miR-101-3p overexpression or STC1 depletion.Inhibition of miR-101-3p manifested opposite results.Conclusions:Taken together,our results demonstrated a regulatory mechanism of miR-101-3p via STC1 in goat granulosa cells,and offered the first in vivo example of miR-101-3p and STC1 functions required for ovarian development.展开更多
The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variab...The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variability of STCs under global warming is investigated using multimodal outputs from the latest phase of the Coupled Model Inter-comparison Project(CMIP6)and ocean reanalysis products.Firstly,the volume transport diagnostic analysis is employed to evaluate how coupled models and ocean reanalysis products reproduce interior STC transport.The variation of heat transport by the interior STC under the high-emissions warming scenarios is also analyzed.The results show that the multimodal-mean linear trends of the interior STC transport along 9°S and 9°N are-0.02 Sv/a and 0.04 Sv/a under global warming,respectively,which is mainly due to the combined effect of the strengthened upper oceanic stratification and the weakening of wind field.There is a compensation relationship between the interior STC and the western boundary transport in the future climate,and the compensation relationship of 9°S is more significant than that of 9°N.In addition,compared with ocean reanalysis products,the coupled models tend to underestimate the variability of the interior STC transport convergence,and thus may lose some sea surface temperature(SST)driving force,which may be the reason for the low STC-SST correlation simulated by the model.The future scenario simulation shows that the heat transport of interior STC is weakened under global warming,with a general agreement across models.展开更多
基金supported by the National Natural Science Foundation of China(31601925)Shaanxi Science and Technology Innovation Project Plan(2020ZDLNY02–01,2020ZDLNY02–02,2018ZDCXL-NY-01-04,2018ZDCXL-NY-01-02 and 2017ZDXM-NY-081)Natural Science Foundation of Shaanxi Province(2020JQ-868)。
文摘Background:MiRNAs act as pivotal post-transcriptional gene mediators in the regulation of diverse biological processes,including proliferation,development and apoptosis.Our previous study has showed that miR-101-3p is differentially expressed in dairy goat ovaries compared single with multiple litters.The objective of this research was to explore the potential function and molecular mechanism of miR-101-3p via its target STC1 in goat ovarian growth and development.Results:cDNA libraries were constructed using goat granulosa cells transfected with miR-101-3p mimics and negative control by RNA-sequencing.In total,142 differentially expressed unigenes(DEGs)were detected between two libraries,including 78 down-regulated and 64 up-regulated genes.GO and KEGG enrichment analysis showed the potential impacts of DEGs on ovarian development.STC1 was singled out from DEGs for further research owing to it regulates reproductive-related processes.In vitro,bioinformatics analysis and 3′-UTR assays confirmed that STC1 was a target of miR-101-3p.ELISA was performed to detect the estrogen(E2)and progesterone(P4)levels.CCK8,EdU and flow cytometry assays were performed to detect the proliferation and apoptosis of granulosa cells.Results showed that miR-101-3p regulated STAR,CYP19A1,CYP11A1 and 3β-HSD steroid hormone synthesis-associated genes by STC1 depletion,thus promoted E2 and P4 secretions.MiR-101-3p also affected the key protein PI3K,PTEN,AKT and mTOR in PI3K-AKT pathway by STC1,thereby suppressing proliferation and promoting apoptosis of granulosa cells.In vivo,the distribution and expression levels of miR-101-3p in mouse ovaries were determined through fluorescence in situ hybridisation(FISH).Immunohistochemistry results showed that STC1 expression was suppressed in mouse ovaries in miR-101-3p-agonist and siRNA-STC1 groups.Small and stunted ovarian fragments,decreased numbers of follicles at diverse stages were observed using Hematoxylin-eosin(HE)staining,thereby showing unusual ovarian development after miR-101-3p overexpression or STC1 depletion.Inhibition of miR-101-3p manifested opposite results.Conclusions:Taken together,our results demonstrated a regulatory mechanism of miR-101-3p via STC1 in goat granulosa cells,and offered the first in vivo example of miR-101-3p and STC1 functions required for ovarian development.
基金the National Natural Science Foundation of China(NSFC)(No.41976027)。
文摘The Pacific subtropical cells(STCs)are shallow meridional overturning circulations connecting the tropics and subtropics,and are assumed to be an important driver of the tropical Pacific decadal variability.The variability of STCs under global warming is investigated using multimodal outputs from the latest phase of the Coupled Model Inter-comparison Project(CMIP6)and ocean reanalysis products.Firstly,the volume transport diagnostic analysis is employed to evaluate how coupled models and ocean reanalysis products reproduce interior STC transport.The variation of heat transport by the interior STC under the high-emissions warming scenarios is also analyzed.The results show that the multimodal-mean linear trends of the interior STC transport along 9°S and 9°N are-0.02 Sv/a and 0.04 Sv/a under global warming,respectively,which is mainly due to the combined effect of the strengthened upper oceanic stratification and the weakening of wind field.There is a compensation relationship between the interior STC and the western boundary transport in the future climate,and the compensation relationship of 9°S is more significant than that of 9°N.In addition,compared with ocean reanalysis products,the coupled models tend to underestimate the variability of the interior STC transport convergence,and thus may lose some sea surface temperature(SST)driving force,which may be the reason for the low STC-SST correlation simulated by the model.The future scenario simulation shows that the heat transport of interior STC is weakened under global warming,with a general agreement across models.