期刊文献+
共找到513篇文章
< 1 2 26 >
每页显示 20 50 100
Reconfigurable exceptional point-based sensing with 0.001λsensitivity using spoof localized surface plasmons
1
作者 Yaoran Zhang Hao Hu +4 位作者 Francisco JoséGarcía-Vidal Jingjing Zhang Liangliang Liu Yu Luo Zhuo Li 《Advanced Photonics Nexus》 2024年第5期58-66,共9页
Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-per... Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-performance sensors.The exceptional point,a spectral singularity widely existing in non-Hermitian systems,provides an indispensable route to enhance the sensitivity of optical detection.However,the exceptional point of the forementioned systems is set once the system is built or fabricated,and machining errors make it hard to reach such a state precisely.To this end,we develop a highly tunable and reconfigurable exceptional point system,i.e.,a single spoof plasmonic resonator suspended above a substrate and coupled with two freestanding Rayleigh scatterers.Our design offers great flexibility to control exceptional point states,enabling us to dynamically reconfigure the exceptional point formed by various multipolar modes across a broadband frequency range.Specifically,we experimentally implement five distinct exceptional points by precisely manipulating the positions of two movable Rayleigh scatterers.In addition,the enhanced perturbation strength offers remarkable sensitivity enhancement for detecting deep-subwavelength particles with the minimum dimension down to 0.001λ(withλto be the free-space wavelength). 展开更多
关键词 non-Hermitian optics spoof localized surface plasmons exceptional points ultrasensitive microwave sensors
下载PDF
Spin-controlled directional launching of surface plasmons at the subwavelength scale
2
作者 黄韬 王佳见 +4 位作者 李梓维 刘伟 林峰 方哲宇 朱星 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期331-334,共4页
In this paper, we demonstrate a spin-controlled directional launching of surface plasmons at the subwavelength scale.Based on the principle of optical spin's effect for the geometric phase of light, the nanostructure... In this paper, we demonstrate a spin-controlled directional launching of surface plasmons at the subwavelength scale.Based on the principle of optical spin's effect for the geometric phase of light, the nanostructures were designed. The inclination of the structures decides the spin-related geometric phase and their relative positions decide the distance-related phase. Hence, the propagation direction of the generated surface plasmon polaritons(SPPs) can be controlled by the spin of photons. Numerical simulations by the finite difference time domain(FDTD) method have verified our theoretical prediction. Our structure is fabricated on the Au film by using a focused ion beam etching technique. The total size of the surface plasmon polariton(SPP) launcher is 320 nm by 180 nm. The observation of the SPP launching by using scanning near-field optical microscopy is in agreement with our theory and simulations. This result may provide a new way of spin-controlled directional launching of SPP. 展开更多
关键词 surface plasmon spin-controlled directional launching subwavelength scale
下载PDF
Protein Based Localized Surface Plasmon Resonance Gas Sensing
3
作者 Meisam Omidi Gh.Amoabediny +1 位作者 F.Yazdian M.Habibi-Rezaei 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期166-169,共4页
We apply the localized surface plasrnon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrorne c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range o... We apply the localized surface plasrnon resonance (LSPR) of gold nanoparticles (GNPs) covalently coupled with cytochrorne c (cyt c) to create a nanobiosensor for detecting hydrogen sulfide (H2S) in the range of 15 lOOppb. Monolayer formation of GNPs on glass surface functionalized with 3-aminopropyltrirnethoxysilane (APTMS) is performed for fabricating a chip-based format of the optical transducer. By chemical introduction of short-chain thiol derivatives on cyt c protein shell via its lysine residues, a very fast self-assembled rnonolayer (SAM) of cyt c is formed on the GNPs. Significant shifts in the LSPR peak (△λLSPR) are observed by reacting H2S with cyt c. Results show a linear relationship between △λLSPR and H2S concentration. Furthermore, shifts in the LSPR peak are reversible and the peak positions return to their pre-exposure values once the H2S is removed. The experirnental results strongly indicate that the protein based LSPR chip can be successfully used as a simple, fast, sensitive and quantitative sensor for H2S detection. 展开更多
关键词 Protein Based localized surface plasmon Resonance Gas Sensing
下载PDF
Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy 被引量:2
4
作者 HAILONG WANG YUYANG WANG +2 位作者 YI WANG WEIQING XU SHUPING XU 《Photonics Research》 SCIE EI 2017年第5期518-526,共9页
Coupling efficiency between the localized surface plasmons(LSPs) of metal nanoparticles(NPs) and incident light dominates the sensitivities of plasmon-based sensing spectroscopies and imaging techniques, e.g., surface... Coupling efficiency between the localized surface plasmons(LSPs) of metal nanoparticles(NPs) and incident light dominates the sensitivities of plasmon-based sensing spectroscopies and imaging techniques, e.g., surfaceenhanced Raman scattering(SERS) spectroscopy. Many endogenous features of metal NPs(e.g., size, shape,aggregation form, etc.) that have strong impacts on their LSPs have been discussed in detail in previous studies.Here, the polarization-tuned electromagnetic(EM) field that facilitates the LSP coupling is fully discussed.Numerical analyses on waveguide-based evanescent fields(WEFs) coupled with the LSPs of dispersed silver nanospheres and silver nano-hemispheres are presented and the applicability of the WEF-LSPs to plasmon-enhanced spectroscopy is discussed. Compared with LSPs under direct light excitation that only provide 3–4 times enhancement of the incidence field, the WEF-LSPs can amplify the electric field intensity about 30–90 times(equaling the enhancement factor of 10~6–10~8 in SERS intensity), which is comparable to the EM amplification of the SERS"hot spot" effect. Importantly, the strongest region of EM enhancement around silver nanospheres can be modulated from the gap region to the side surface simply by switching the incident polarization from TM to TE, which widely extends its sensing applications in surface analysis of monolayer of molecule and macromolecule detections. This technique provides us a unique way to achieve remarkable signal gains in many plasmon-enhanced spectroscopic systems in which LSPs are involved. 展开更多
关键词 NP Ag Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy WEF
原文传递
Ultrasensitive nanosensors based on localized surface plasmon resonances:From theory to applications 被引量:5
5
作者 Wen Chen Huatian Hu +3 位作者 Wei Jiang Yuhao Xu Shunping Zhang Hongxing Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期58-78,共21页
The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak ... The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak processes with nanoscale spatial resolution. One of the main goals of this field of research is to lower the absolute limit-of-detection(LOD)of LSPR-based sensors. This involves the improvement of(i) the figure-of-merit associated with structural parameters such as the size, shape and interparticle arrangement and,(ii) the spectral resolution. The latter involves advanced target identification and noise reduction techniques. By highlighting the strategies for improving the LOD, this review introduces the fundamental principles and recent progress of LSPR sensing based on different schemes including 1) refractometric sensing realized by observing target-induced refractive index changes, 2) plasmon rulers based on target-induced relative displacement of coupled plasmonic structures, 3) other relevant LSPR-based sensing schemes including chiral plasmonics,nanoparticle growth, and optomechanics. The ultimate LOD and the future trends of these LSPR-based sensing are also discussed. 展开更多
关键词 plasmonic sensing localized surface plasmon resonance plasmon rulers NANOPARTICLES
下载PDF
Tunable localized surface plasmon resonances in MoO_(3-x)-TiO_(2) nanocomposites with enhanced catalytic activity for CO_(2) photoreduction under visible light 被引量:4
6
作者 Shunji Xie Haikun Zhang +4 位作者 Guodong Liu Xuejiao Wu Jinchi Lin Qinghong Zhang Ye Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第7期1125-1131,共7页
The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported ... The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation. 展开更多
关键词 PHOTOCATALYSIS Carbon dioxide Visible light localized surface plasmon resonance MoO_(3-x)-TiO_(2) nanocomposite
下载PDF
Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles 被引量:3
7
作者 F Sobhani H Heidarzadeh H Bahador 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期532-537,共6页
The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a clust... The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell,using the finite difference time domain(FDTD)method.By calculating the optical absorption and hence the photocurrent,it is shown that the clustering of nanoparticles significantly improves them.The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles.For comparison,first a cell with a single nanoparticle at the rear side is evaluated.Then four smaller nanoparticles are put around it to make a cluster.The photocurrents of 20.478 mA/cm2,23.186 mA/cm2,21.427 mA/cm2,and 21.243 mA/cm2 are obtained for the cells using clustering conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.These values are 13.987 mA/cm2,16.901 mA/cm2,16.507 mA/cm2,17.926 mA/cm2 for the cell with one conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.Therefore,clustering can significantly improve the photocurrents.Finally,the distribution of the electric field and the generation rate for the proposed structures are calculated. 展开更多
关键词 clustering nanoparticles plasmonic solar cell localized surface plasmon resonance PHOTOCURRENT finite difference time domain(FDTD)method light management
下载PDF
Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer 被引量:2
8
作者 蒋书敏 吴大建 +1 位作者 程营 刘晓峻 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期481-486,共6页
The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering the... The influences of the anisotropy of the outer spherically anisotropic (SA) layer on the far-field spectra and near- field enhancements of the silver nanoshells are investigated by using a modified Mie scattering theory. It is found that with the increase of the anisotropic value of the SA layer, the dipole resonance wavelength of the silver nanoshell first increases and then decreases, while the local field factor (LFF) reduces. With the decrease of SA layer thickness, the dipole wavelength of the silver nanoshell shows a distinct blue-shift. When the SA layer becomes very thin, the modulations of the anisotropy of the SA layer on the plasmon resonance energy and the near-field enhancement are weakened. We further find that the smaller anisotropic value of the SA layer is helpful for obtaining the larger near-field enhancement in the Ag nanoshell. The geometric average of the dielectric components of the SA layer has a stronger effect on the plasmon resonance energy of the silver nanoshell than on the near-field enhancement. 展开更多
关键词 Ag nanoshell spherically anisotropic Mie theory localized surface plasmon resonance
下载PDF
Subwavelength negative-index waveguiding enabled by coupled spoof magnetic localized surface plasmons 被引量:1
9
作者 ZHEN LIAO GUO QING LUO +2 位作者 BEN GENG CAI BAI CAO PAN WEN HUI CAO 《Photonics Research》 SCIE EI CSCD 2019年第3期274-282,共9页
Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. B... Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. Based on the strong coupling, spoof magnetic plasmon modes propagating in the backward direction are proposed along a chain of subwavelength resonators. The theoretical analysis, numerical simulations, and experiments are in good agreement. The proposed novel route for achieving negative-index waveguiding has potential applications in integrated devices and circuits. 展开更多
关键词 subwavelength NEGATIVE-INDEX waveguiding COUPLED spoof MAGNETIC localized surface plasmons MAGNETIC localized surface plasmon modes
原文传递
Polarization dependence of the light coupling to surface plasmons in an Ag nanoparticle & Ag nanowire system 被引量:1
10
作者 杨超杰 赵华波 +5 位作者 王培培 李洁 唐鹏 曲胜春 林峰 朱星 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期489-495,共7页
Polarization dependence of the coupling of excitation light to surface plasmon polaritons (SPPs) was investigated in a Ag nanoparticle-nanowire waveguide system (a Ag nanoparticle attached to a Ag nanowire). It wa... Polarization dependence of the coupling of excitation light to surface plasmon polaritons (SPPs) was investigated in a Ag nanoparticle-nanowire waveguide system (a Ag nanoparticle attached to a Ag nanowire). It was found that under the illumination of excitation light on the nanoparticle-nanowire junction, the coupling efficiency of light to SPPs depends on the polarization of the excitation light. Theoretical simulations revealed that it is the local near-field coupling between the nanoparticle and the nanowire that enhances the incident light to excite the nanowire SPPs. Because the shapes of the Ag nanoparticles differ, the local field intensity, and thus the excitement of the nanowire SPPs, vary with the polarization of the excitation light. 展开更多
关键词 Ag nanowire Ag nanoparticle surface plasmon local near field
下载PDF
A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film 被引量:1
11
作者 张祖银 王立娜 +3 位作者 胡海峰 李康文 马勋鹏 宋国峰 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期345-348,共4页
We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso... We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors. 展开更多
关键词 localized surface plasmon biosensor figure of merit nanogratings gold film
下载PDF
Polydopamine-Assisted Fabrication of Fiber-Optic Localized Surface Plasmon Resonance Sensor Based on Gold Nanoparticles 被引量:1
12
作者 苏荣欣 裴哲远 +4 位作者 黄仁亮 齐崴 王梦凡 王利兵 何志敏 《Transactions of Tianjin University》 EI CAS 2015年第5期412-419,共8页
A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 5... A fast and facile method of fabricating fiber-optic localized surface plasmon resonance sensors baseff on spherical gold nanoparticles was introduced in this study. The gold nanoparticles with an average diameter of 55 nm were synthesized via the Turkevich method and were then immobilized onto the surface of an uncladded sensor probe using a polydopamine layer. To obtain a sensor probe with high sensitivity to changes in the refractive index, a set of key optimization parameters, including the sensing length, coating time of the potydopamine layer, and coating time of the gold nanoparticles, were investigated. The sensitivity of the optimized sensor probe was 522.80 nm per refractive index unit, and the probe showed distinctive wavelength shifts when the refractive index was changed from 1.328 6 to 1.398 7. When stored in deionized water at 4 ℃, the sensor probe proved to be stable over a period of two weeks. The sensor also exhibited advantages, such as low cost, fast fabrication, and simple optical setup, which indicated its potential application in remote sensing and real-time detection. 展开更多
关键词 localized surface plasmon resonance SENSOR gold nanoparticles POLYDOPAMINE optimization
下载PDF
Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures 被引量:1
13
作者 Ling-Xi Hu Min Hu Sheng-Gang Liu 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期20-29,共10页
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr... The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature. 展开更多
关键词 Coherent radiation high-power radiation localized surface plasmon(LSP) micro-nano structure Smith-Purcell radiation surface plasmon polaritons(SPPs)
下载PDF
Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing 被引量:2
14
作者 Sajid Farooq Renato E. de Araujo 《Open Journal of Applied Sciences》 2018年第3期126-139,共14页
In this work, we introduce a new perspective on the development of Localized Surface Plasmon Resonance (LSPR) optical biosensors. Computational simulations, focused on the assessment of the LSPR spectrum and spatial d... In this work, we introduce a new perspective on the development of Localized Surface Plasmon Resonance (LSPR) optical biosensors. Computational simulations, focused on the assessment of the LSPR spectrum and spatial distribution of the electromagnetic field enhancement near a metallic nanoparticle, elucidated the behavior of crucial parameters, as figure of merit, bulk and molecular sensitivity, which governs a LSPR sensor performance. Gold and silver nanospheres were explored as starting point to assess plasmonic optical characteristics of the nanostructured sensor platform. Here, for the first time in the literature, Campbell’s model was evaluated exploiting a NP size-dependence approach. The theoretical analyses indicate a nonlinear behavior of the bulk and molecular sensitivity as function of the NP size. Substantial LSPR peak shifts due to the adsorption of molecules layer on a NP surface were observed for nanoparticles with ~5 nm and ~40 nm radius. Moreover, on molecular sensing, LSPR peak shift is also determined by the thickness of adsorbed molecular shell layers. We observed that for 40 nm radius gold and silver nanospheres, significant LSPR peak shift could be induced by small (few nm) thickness change of the adsorbate shell layer. Moreover, this work provides insights on the LSPR behavior due to adsorption of molecular layer on a NP surface, establishing a new paradigm on engineering LSPR biosensor. Furthermore, the proposed approach can be extended to engineer an efficiently use of different nanostructures on molecular sensing. 展开更多
关键词 localized surface plasmon RESONANCE Optical Sensor NANOMATERIALS
下载PDF
Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
15
作者 Yan Chen Xianchao Liu +3 位作者 Weidong Chen Zhengwei Xie Yuerong Huang Ling Li 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期508-513,共6页
Localized surface plasmon (LSPR) resonance and sensing properties of a novel nanostructure (sexfoil nanoparticle) are studied using the finite-difference time-domain method. For the sandwich sexfoil nanoparticle, ... Localized surface plasmon (LSPR) resonance and sensing properties of a novel nanostructure (sexfoil nanoparticle) are studied using the finite-difference time-domain method. For the sandwich sexfoil nanoparticle, the calculated extinction spectrum shows that with the thickness of the dielectric layer increasing, long-wavelength peaks blueshift, while short- wavelength peaks redshift. Strong near-field coupling of the upper and lower metal layers leads to electric and magnetic field resonances; as the thickness increases, the electric field resonance gradually increases, while the magnetic field resonance decreases. The obtained refractive index sensitivity and figure of merit are 332 nm/RIU and 3.91 RIU^-1, respectively. In order to obtain better sensing ability, we further research the LSPR character of monolayer Ag sexfoil nanoparticle. After a series of trials to optimize the thickness and shape, the refractive index sensitivity approximates 668 nm/RIU, and the greatest figure of merit value comes to 14.8 RIU^-1. 展开更多
关键词 sexfoil nanoparticle localized surface plasmon resonance extinction properties LSPR sensors
下载PDF
Tunable and stable localized surface plasmon resonance in SrMoO_(4) for enhanced visible light driven nitrogen reduction
16
作者 Qiang Li Zhenhuan Zhao +9 位作者 Xiaoxia Bai Xin Tong Shuai Yue Jingying Luo Xin Yu Zhenni Wang Zheng Wang Peipei Li Yanping Liang Zhiming Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1763-1771,共9页
Photocatalytic nitrogen reduction for the green synthesis of ammonia at ambient conditions has been slowed by the narrow light harvesting range,low activity and high charge recombination of photocatalysts.Plasmonic se... Photocatalytic nitrogen reduction for the green synthesis of ammonia at ambient conditions has been slowed by the narrow light harvesting range,low activity and high charge recombination of photocatalysts.Plasmonic semiconducting nanomaterials are becoming the promising candidates for nitrogen photofixation because of the broad absorption spectrum,rich defects and hot carriers.In the present study,plasmonic SrMoO_(4) is developed by regulating the concentration of oxygen vacancies that are accompanied in the reduction process from Mo^(6+) to Mo^(5+).The stable and tunable localized surface plasmon resonance(LSPR)absorption in visible and near infrared light range makes the wide bandgap SrMoO_(4) utilize the solar energy more efficiently.Energetic electrons from both the intrinsic band excitation and the LSPR excitation enable the reduction of dinitrogen molecules thermodynamically in ultrapure water to ammonia.This work provides a unique clue to design efficient photocatalysts for nitrogen fixation. 展开更多
关键词 SrMoO4 plasmonic semiconductor localized surface plasmon resonance Oxygen vacancy Photocatalytic nitrogen reduction
下载PDF
Corrigendum to“Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED”
17
作者 李晓苗 刘发民 +3 位作者 李子更 朱虹燕 王帆 钟晓岚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期666-666,共1页
We would like to point out the misprinted Fig.3 in our published paper[Chin.Phys.B 32,114205(2023)].Since only orders of subfigures need to be corrected and the main results of the published paper are correct,we prese... We would like to point out the misprinted Fig.3 in our published paper[Chin.Phys.B 32,114205(2023)].Since only orders of subfigures need to be corrected and the main results of the published paper are correct,we present the correct figure in this corrigendum. 展开更多
关键词 quantum optics electromagnetically induced transparency all-optical switching localized surface plasmon
下载PDF
Electromagnetically induced transparency via localized surface plasmon mode-assisted hybrid cavity QED
18
作者 李晓苗 刘发民 +3 位作者 李子更 朱虹燕 王帆 钟晓岚 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期456-464,共9页
In recent years, most studies have focused on the perfect absorption and high-efficiency quantum memory of the onesided system, ignoring the characteristics of its optical switching contrast. Thus, the performance of ... In recent years, most studies have focused on the perfect absorption and high-efficiency quantum memory of the onesided system, ignoring the characteristics of its optical switching contrast. Thus, the performance of all-optical switching and optical transistors is limited. Herein, we propose a localized surface plasmon(LSP) mode-assisted cavity QED system which consists of a Λ-shaped three-level quantum emitter(QE), a metal nanoparticle and a one-sided optical cavity with a fully reflected mirror. In this system, the QE coherently couples to the cavity and LSP mode respectively, which is manipulated by the control field. As a result, considerably high and stable switch contrast of 90% can be achievable due to the strong confined field of the LSP mode and perfect absorption of the optical medium. In addition, we obtain a power dependent effect between the control field and the transmitted frequency as a result of the converted dark state. We employ the Heisenberg–Langevin equation and numerical master equation formalisms to explain high switching, controllable output light and the dark state. Our system introduces an effective method to improve the performance of optical switches based on the one-sided system in quantum information storage and quantum communication. 展开更多
关键词 quantum optics electromagnetically induced transparency all-optical switching localized surface plasmon
下载PDF
Toward transparent projection display:recent progress in frequency‐selective scattering of RGB light based on metallic nanoparticle’s localized surface plasmon resonance
19
作者 Yiyang Ye Zhen Liu Tupei Chen 《Opto-Electronic Advances》 2019年第12期2-16,共15页
A transparent display simultaneously enables visualization of the images displayed on it as well as the view behind it,and therefore can be applied to,for instance,augmented reality(AR),virtual reality(VR),and head up... A transparent display simultaneously enables visualization of the images displayed on it as well as the view behind it,and therefore can be applied to,for instance,augmented reality(AR),virtual reality(VR),and head up display(HUD).Many solutions have been proposed for this purpose.Recently,the idea of frequency-selective scattering of red,green and blue light while transmitting visible light of other colours to achieve transparent projection display has been proposed,by taking advantage of metallic nanoparticle’s localized surface plasmon resonance(LSPR).In this article,a review of the recent progress of frequency-selective scattering of red,green and blue light that are based on metallic nanoparticle’s LSPR is presented.A discussion of method for choosing appropriate metal(s)is first given,followed by the definition of a figure of merit used to quantify the performance of a designed nanoparticle structure.Selective scattering of various nanostructures,including sphere-shaped nanoparticles,ellipsoidal nanoparticles,super-sphere core-shell nanoparticles,metallic nanocubes,and metallic nanoparticles combined with gain materials,are discussed in detail.Each nanostructure has its own advantages and disadvantages,but the combination of the metallic nanoparticle with gain materials is a more promising way since it has the potential to generate ultra-sharp scattering peaks(i.e.,high frequency-selectivity). 展开更多
关键词 light scattering localized surface plasmon resonance transparent display
下载PDF
Determination of Evanescent Electric Field Decay Length of Metallic Nanodisks by Using Localized Surface Plasmon Spectroscopy
20
作者 Gregory Barbillon 《材料科学与工程(中英文版)》 2010年第11期69-74,共6页
关键词 等离子体光谱 衰减长度 电场 表面 纳米 金属 本地化 测定
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部