At present the bored construction method is one of the main construction methods of metro and tunnel construction in China. The empirical estimated formulas of tunnel ground surface settlement using the bored construc...At present the bored construction method is one of the main construction methods of metro and tunnel construction in China. The empirical estimated formulas of tunnel ground surface settlement using the bored construction method were obtained, combining the mechanical stimulant calculated result of tunnel model of different embedded depth, different cross section and different construction method and the actual measurement data of Beijing metro construction. According to the regressed analysis of calculated data, the calculated equations of ground surface settlement value and settlement range of tunnel section under the condition of different embedded depth, different cross section and different construction method were gained. Among them there are some empirical formulas can apply to the construction design of metro tunnel directly.展开更多
Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspe...Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.展开更多
Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical sol...Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.展开更多
In the present study,a comparison between the new shallow tunneling method(STM)and the traditional pile and rib method(PRM)was conducted to excavate and construct subway stations in the geological conditions of Tehran...In the present study,a comparison between the new shallow tunneling method(STM)and the traditional pile and rib method(PRM)was conducted to excavate and construct subway stations in the geological conditions of Tehran.First,by selecting Station Z6 located in the Tehran Subway Line 6 as a case study,the construction process was analyzed by PRM.The maximum ground settlement of 29.84 mm obtained from this method was related to the station axis,and it was within the allowable settlement limit of 30 mm.The acceptable agreement between the results of numerical modeling and instrumentation data indicated the confirmation and accuracy of the excavation and construction process of Station Z6 by PRM.In the next stage,based on the numerical model validated by instrumentation data,the value of the ground surface settlement was investigated during the station excavation and construction by STM.The results obtained from STM showed a significant reduction in the ground surface settlement compared to PRM.The maximum settlement obtained from STM was 6.09 mm as related to the front of the excavation face.Also,the sensitivity analysis results denoted that in addition to controlling the surface settlement by STM,it is possible to optimize some critical geometric parameters of the support system during the station excavation and construction.展开更多
文摘At present the bored construction method is one of the main construction methods of metro and tunnel construction in China. The empirical estimated formulas of tunnel ground surface settlement using the bored construction method were obtained, combining the mechanical stimulant calculated result of tunnel model of different embedded depth, different cross section and different construction method and the actual measurement data of Beijing metro construction. According to the regressed analysis of calculated data, the calculated equations of ground surface settlement value and settlement range of tunnel section under the condition of different embedded depth, different cross section and different construction method were gained. Among them there are some empirical formulas can apply to the construction design of metro tunnel directly.
基金supported by the Fundamental Research Funds for the Central Universities(2023JBZD004)the National Natural Science Foundation of China(U2034204,52078031)the Science and Technology Development Project of cccC Harbin Metro Investment and Construction Co.,Ltd.(ZJHD-FW-2018-01-086).
文摘Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.
基金Project(52078129)supported by the National Natural Science Foundation of ChinaProjects(KYCX22_0268,SJCX21_0031)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of China
文摘Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.
文摘In the present study,a comparison between the new shallow tunneling method(STM)and the traditional pile and rib method(PRM)was conducted to excavate and construct subway stations in the geological conditions of Tehran.First,by selecting Station Z6 located in the Tehran Subway Line 6 as a case study,the construction process was analyzed by PRM.The maximum ground settlement of 29.84 mm obtained from this method was related to the station axis,and it was within the allowable settlement limit of 30 mm.The acceptable agreement between the results of numerical modeling and instrumentation data indicated the confirmation and accuracy of the excavation and construction process of Station Z6 by PRM.In the next stage,based on the numerical model validated by instrumentation data,the value of the ground surface settlement was investigated during the station excavation and construction by STM.The results obtained from STM showed a significant reduction in the ground surface settlement compared to PRM.The maximum settlement obtained from STM was 6.09 mm as related to the front of the excavation face.Also,the sensitivity analysis results denoted that in addition to controlling the surface settlement by STM,it is possible to optimize some critical geometric parameters of the support system during the station excavation and construction.