Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology s...Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology sensing system at the front end of operating trains is a critical measure to ensure subway safety.Taking leakage as the typical pathology,a tunnel pathology automatic visual detection method based on Deeplabv3+(ASTPDS)was proposed to achieve automatic and high-precision detection and pixel-level morphology extraction of pathologies.Compared with similar methods,this approach showed significant advantages and achieved a detection accuracy of 93.12%,surpassing FCN and U-Net.Moreover,it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33%and 8.19%,respectively.展开更多
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con...As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.展开更多
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe...Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.展开更多
There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment ...There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.展开更多
Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- men...Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.展开更多
Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. T...Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. The subway tunnel is assumed to be the single-car-passing straight type (single-bore tunnel). The modeled car is relatively moved forward. On the other hand, the tunnel and vertical ventilation are fixed. The momentum equations are solved by LES (large eddy simulation) method. The initial condition of fluid in the subway tunnel is stationary. The Reynolds number is 1,500 based on the cylinder radius. The turbulent flow field in the subway tunnel and vertical ventilation shaft are to be qualitatively investigated.展开更多
When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed bu...When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the application ranges and forecasting precision of these methods vary considerably. In order to quantitatively analyze the characteristics of the different methods, a subway tunnel passing underneath a river was selected, and the aforementioned five methods were used to forecast the maximum scour depth. The fluvial process analysis method was used to characterize the river regime and evolution trend, which were the baseline for examination of the scour depth of the riverbed. The results obtained from the scour model experiment and the numerical simulation methods are reliable; these two methods are suitable for application to tunnel projects passing underneath rivers. The scour formula method was less accurate than the scour model experiment method; it is suitable for application to lower risk projects such as pipelines. The results of the geological structure analysis had low precision; the method is suitable for use as a secondary method to assist other research methods. To forecast the maximum scour depth of the riverbed above the subway tunnel, a combination of methods is suggested, and the appropriate analysis method should be chosen with respect to the local conditions.展开更多
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ...A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures.展开更多
In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate ...In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.展开更多
The subway operation generates a large amount of waste heat,which will lead to a disruption of the underground thermal balance.To remove the heat,a ground source heat pump system adopting capillary net as the front-en...The subway operation generates a large amount of waste heat,which will lead to a disruption of the underground thermal balance.To remove the heat,a ground source heat pump system adopting capillary net as the front-end heat exchanger can be built in the tunnels to recycle the waste heat and use it for building heating.Different simulation method was used to analyze the heat transfer process in the tunnel and the surrounding rock.The existing simulation method usually takes a long time for calculation and can not be used for a real-time regulation of the system.Based on the concept of thermoelectric analogy,a resistance-capacitance(RC)model was proposed for rapid prediction and analysis on the heat transfer of the capillary net in subway tunnel.The annual thermal response in the tunnel was analyzed,and the influence of the tunnel air temperature and the capillary inlet water temperature was examined using this model.The maximum heat transfer flux of the capillary in summer(release heat)and in winter(extract heat)was 55.27 W/m 2 and 38.33 W/m 2,respectively.The effect of capillary inlet water temperature was more remarkable than that of the tunnel air temperature on the capillary heat exchange process.展开更多
Modal parameters are of great significance in civil engineering because they can characterize the properties of structures and be used for vibration control and structural health monitoring.Subway tunnels are long lin...Modal parameters are of great significance in civil engineering because they can characterize the properties of structures and be used for vibration control and structural health monitoring.Subway tunnels are long linear truss structures combined with the mutual cou-pling of the surrounding soil.Therefore,the operational modal analysis of a mutual coupling tunnel is complicate,as is the modal iden-tification of shield tunnels in a time–frequency domain,and these are hot civil engineering topics.Using the shield tunnel of Shanghai metro line No.12 project as a case study,we carried out the vibration response monitoring of a subway tunnel during operation and presented methods to identify structural modal parameters.The modal parameters of lower vibration modes were estimated using response measurements.Modal frequencies and shapes were identified with high precision and accuracy using the orthogonal polynomial clustering algorithm under hammer excitation conditions and the autoregressive-moving-average model under ambient excitation con-ditions.The dynamic behavior of a mutual coupling tunnel presented obvious low frequency characteristics,and the first 9th order mode frequencies were less than 100 Hz.The diagonal values of the modal assurance criteria were all greater than 0.85.The modal parameters can be used for the health monitoring of operational subway tunnels.展开更多
The objective of this study is to investigate numerically the characteristics of train-induced unsteady airflow in a subway tunnel with natural ventilation ducts.A three-dimensional numerical model using the dynamic l...The objective of this study is to investigate numerically the characteristics of train-induced unsteady airflow in a subway tunnel with natural ventilation ducts.A three-dimensional numerical model using the dynamic layering method for the moving boundary of a train is first developed,and then it is validated against the model tunnel experimental data.With the tunnel and subway train geometries in the numerical model exactly the same as those in the model tunnel experimental test,but with the ventilation ducts being connected to the tunnel ceiling and a barrier placed at the tunnel outlet,the three-dimensional train-induced unsteady tunnel flows are numerically simulated.The computed distributions of the pressure and the air velocity in the tunnel as well as the time series of the mass flow rate at the ventilation ducts reveal the impact of the train motion on the exhaust and suction of the air through ventilation ducts and the effects of a barrier placed at the tunnel outlet on the duct ventilation performance.As the train approaches a ventilation duct,the air is pushed out of the tunnel through the duct.As the train passes the ventilation duct,the exhaust flow in the duct is changed rapidly to the suction flow.After the train passes the duct,the suction mass flow rate at the duct decreases with time since the air pressure at the opening of the duct is gradually recovered with time.A drastic change in the mass flow rate at a ventilation duct while a train passes the corresponding ventilation duct,causes a change in the exhaust mass flow rate at other ventilation ducts.Also,when a barrier is placed at the tunnel outlet,the air volume discharge rate at each ventilation duct is greatly increased,i.e.,the barrier placed at the tunnel outlet can improve remarkably the ventilation performance through each duct.展开更多
In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,...In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,wave propagation in the infinitely extended ground is dealt with using a simple,yet efficient gradually damped artificial boundary.Based on the assumption of invariant geometry and material distribution in the tunnel's direction,the Fourier transform of the spatial dimension in this direction is applied to represent the waves in terms of the wave-number.Finite element discretization is employed in the cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number.The 3D ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform.The accuracy of the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum.A case study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the vibration frequency of the moving load is discussed.展开更多
An unsteady three-dimensional analysis of the ventilation performance is carried out for different ventilation strategies to find out a ventilation method with a high performance in a subway tunnel.The natural ventila...An unsteady three-dimensional analysis of the ventilation performance is carried out for different ventilation strategies to find out a ventilation method with a high performance in a subway tunnel.The natural ventilation performance associated with a train-induced air flow in a subway tunnel is examined.The dynamic layering method is used to consider the moving boundary of a train in the current CFD method.The geometries of the modeled tunnel and the subway train are partially based on those of the Seoul subway.The effects of the structure of the ventilation duct and the geometry of the partitions on the ventilation performance are evaluated.The results show that the combined ventilation ducts (to be designed),and the partitioning blocks installed along the middle of tunnel (already in existences) are helpful for air exchange.This study can provide some guidance for the design of ventilation ducts in a subway system.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspe...Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.展开更多
Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
The surcharge load at the ground surface inevitably breaks the original equilibrium state between the underneath tunnel and the surrounding soil,which will impact the service performance of a subway tunnel.This paper ...The surcharge load at the ground surface inevitably breaks the original equilibrium state between the underneath tunnel and the surrounding soil,which will impact the service performance of a subway tunnel.This paper presents a novel semi-analytical approach for assessing the time-dependent,longitudinal responses of a subway tunnel in soft soil strata induced by the surcharge load.The solution is developed based on the framework of the classical"two-stage method"but innovatively incorporates the effects of ground stratification,the consolidation process,and the longitudinal stiffness reduction of the lining.Biot’s poroelastic theory in conjunction with the Laplace-Fourier transform technique is selected to model the deformation of the stratified ground,while the Timoshenko beam on a Pasternak foundation is employed to model the mechanical responses of the tunnel.The proposed semi-analytical solution is validated not only by comparison with benchmark solutions and a finite element model,but also by predicting a well-documented field measurement.Parametric analyses are conducted to investigate the effects of the elastic modulus and the permeability coefficient of the stratified ground on the longitudinal responses of the tunnel.It is expected that the proposed solution can serve as a useful tool for evaluating the effects of the surcharge load on the longitudinal responses of a subway tunnel.展开更多
Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical sol...Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.展开更多
According to the stress state of the crack surface, crack rock mass can be divided into complex composite tensile-shear fracture and composite compression-shear fracture from the perspective of fracture mechanics. By ...According to the stress state of the crack surface, crack rock mass can be divided into complex composite tensile-shear fracture and composite compression-shear fracture from the perspective of fracture mechanics. By studying the hydraulic fracturing effect of groundwater on rock fracture, the tangential friction force equation of hydrodynamic pressure to rock fracture is deduced. The hydraulic fracturing of hydrostatic and hydrodynamic pressure to rock fracture is investigated to derive the equation of critical pressure when the hydraulic fracturing effect occurs in the rock fracture. Then, the crack angle that is most prone to hydraulic fracturing is determined. The relationships between crack direction and both lateral pressure coefficient and friction angle of the fracture surface are analyzed. Results show that considering the joint effect of hydrodynamic and hydrostatic pressure, the critical pressure does not vary with the direction of the crack when the surrounding rock stationary lateral pressure coefficient is equal to 1.0. Under composite tensile-shear fracture, the crack parallel to the direction of the main stress is the most prone to hydraulic fracturing. Under compression-shear fracture, the hydrodynamic pressure resulting in the most dangerous crack angle varies at different lateral pressure coefficients; this pressure decreases when the friction angle of the fracture surface increases. By referring to the subway tunnel collapse case, the impact of fractured rock mass hydraulic fracturing generated by hydrostatic and hydrodynamic pressure joint action is calculated and analyzed.展开更多
文摘Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology sensing system at the front end of operating trains is a critical measure to ensure subway safety.Taking leakage as the typical pathology,a tunnel pathology automatic visual detection method based on Deeplabv3+(ASTPDS)was proposed to achieve automatic and high-precision detection and pixel-level morphology extraction of pathologies.Compared with similar methods,this approach showed significant advantages and achieved a detection accuracy of 93.12%,surpassing FCN and U-Net.Moreover,it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33%and 8.19%,respectively.
文摘As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.
文摘Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.
基金supported in part by the NSFC project under grant No.61132003the Fundamental Research Funds for the Central Universities(2013JBZ002)the Ph.D.Program Foundation of Ministry of Education of China under grant No.20120009130002
文摘There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.
基金supported by the Fundamental Research for the Central Universities (SWJTU11ZT33)the Funds for the development of Innovation team of Ministry of Education (IRT0955)
文摘Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.
文摘Moving IBM (immersed boundary method) is applied to analyze the relative motion of railway car flow in the single-bore subway tunnel with vertical ventilation. The tested car body is modeled by cylinder type body. The subway tunnel is assumed to be the single-car-passing straight type (single-bore tunnel). The modeled car is relatively moved forward. On the other hand, the tunnel and vertical ventilation are fixed. The momentum equations are solved by LES (large eddy simulation) method. The initial condition of fluid in the subway tunnel is stationary. The Reynolds number is 1,500 based on the cylinder radius. The turbulent flow field in the subway tunnel and vertical ventilation shaft are to be qualitatively investigated.
基金supported by the National Natural Science Foundation of China (Grants No. 50909037,50879019,and 50879020)the Natural Science Foundation of Hohai University (Grant No. 2008426611),the Foundation for Introducing Talents of Hohai University (Grant No. 20080415)+1 种基金the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08)the Fundamental Research Funds for the Central Universities (Grant No. 2010B01114)
文摘When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the application ranges and forecasting precision of these methods vary considerably. In order to quantitatively analyze the characteristics of the different methods, a subway tunnel passing underneath a river was selected, and the aforementioned five methods were used to forecast the maximum scour depth. The fluvial process analysis method was used to characterize the river regime and evolution trend, which were the baseline for examination of the scour depth of the riverbed. The results obtained from the scour model experiment and the numerical simulation methods are reliable; these two methods are suitable for application to tunnel projects passing underneath rivers. The scour formula method was less accurate than the scour model experiment method; it is suitable for application to lower risk projects such as pipelines. The results of the geological structure analysis had low precision; the method is suitable for use as a secondary method to assist other research methods. To forecast the maximum scour depth of the riverbed above the subway tunnel, a combination of methods is suggested, and the appropriate analysis method should be chosen with respect to the local conditions.
基金supported by the National Natural Science Foundation of China(Grant No.52125803).
文摘A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures.
基金funded by the Scientific Research Startup Foundation of Fujian University of Technology (GY-Z21067 and GY-Z21026).
文摘In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.
基金the National Natural Sci-ence Foundation of China(No.52108079).
文摘The subway operation generates a large amount of waste heat,which will lead to a disruption of the underground thermal balance.To remove the heat,a ground source heat pump system adopting capillary net as the front-end heat exchanger can be built in the tunnels to recycle the waste heat and use it for building heating.Different simulation method was used to analyze the heat transfer process in the tunnel and the surrounding rock.The existing simulation method usually takes a long time for calculation and can not be used for a real-time regulation of the system.Based on the concept of thermoelectric analogy,a resistance-capacitance(RC)model was proposed for rapid prediction and analysis on the heat transfer of the capillary net in subway tunnel.The annual thermal response in the tunnel was analyzed,and the influence of the tunnel air temperature and the capillary inlet water temperature was examined using this model.The maximum heat transfer flux of the capillary in summer(release heat)and in winter(extract heat)was 55.27 W/m 2 and 38.33 W/m 2,respectively.The effect of capillary inlet water temperature was more remarkable than that of the tunnel air temperature on the capillary heat exchange process.
基金supported by National Key R&D Program of China(Grant No.2019YFC0605103)National Natural Science Foundation of China(Grant Nos.51978431,52008214)Science and Technology Foundation of Jiangxi Provincial Transportation Department(Grant No.2020Z0003),China.
文摘Modal parameters are of great significance in civil engineering because they can characterize the properties of structures and be used for vibration control and structural health monitoring.Subway tunnels are long linear truss structures combined with the mutual cou-pling of the surrounding soil.Therefore,the operational modal analysis of a mutual coupling tunnel is complicate,as is the modal iden-tification of shield tunnels in a time–frequency domain,and these are hot civil engineering topics.Using the shield tunnel of Shanghai metro line No.12 project as a case study,we carried out the vibration response monitoring of a subway tunnel during operation and presented methods to identify structural modal parameters.The modal parameters of lower vibration modes were estimated using response measurements.Modal frequencies and shapes were identified with high precision and accuracy using the orthogonal polynomial clustering algorithm under hammer excitation conditions and the autoregressive-moving-average model under ambient excitation con-ditions.The dynamic behavior of a mutual coupling tunnel presented obvious low frequency characteristics,and the first 9th order mode frequencies were less than 100 Hz.The diagonal values of the modal assurance criteria were all greater than 0.85.The modal parameters can be used for the health monitoring of operational subway tunnels.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 2009-0063383)the Seoul R and BD program (Grant No. CS070160)the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Grant No. J50502)
文摘The objective of this study is to investigate numerically the characteristics of train-induced unsteady airflow in a subway tunnel with natural ventilation ducts.A three-dimensional numerical model using the dynamic layering method for the moving boundary of a train is first developed,and then it is validated against the model tunnel experimental data.With the tunnel and subway train geometries in the numerical model exactly the same as those in the model tunnel experimental test,but with the ventilation ducts being connected to the tunnel ceiling and a barrier placed at the tunnel outlet,the three-dimensional train-induced unsteady tunnel flows are numerically simulated.The computed distributions of the pressure and the air velocity in the tunnel as well as the time series of the mass flow rate at the ventilation ducts reveal the impact of the train motion on the exhaust and suction of the air through ventilation ducts and the effects of a barrier placed at the tunnel outlet on the duct ventilation performance.As the train approaches a ventilation duct,the air is pushed out of the tunnel through the duct.As the train passes the ventilation duct,the exhaust flow in the duct is changed rapidly to the suction flow.After the train passes the duct,the suction mass flow rate at the duct decreases with time since the air pressure at the opening of the duct is gradually recovered with time.A drastic change in the mass flow rate at a ventilation duct while a train passes the corresponding ventilation duct,causes a change in the exhaust mass flow rate at other ventilation ducts.Also,when a barrier is placed at the tunnel outlet,the air volume discharge rate at each ventilation duct is greatly increased,i.e.,the barrier placed at the tunnel outlet can improve remarkably the ventilation performance through each duct.
基金Project supported by the National Natural Science Foundation of China (Nos. 51178418 and 51222803)the National Key Technology R&D (863) Program of China (No. 2009BAG12A01-B12-3)
文摘In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,wave propagation in the infinitely extended ground is dealt with using a simple,yet efficient gradually damped artificial boundary.Based on the assumption of invariant geometry and material distribution in the tunnel's direction,the Fourier transform of the spatial dimension in this direction is applied to represent the waves in terms of the wave-number.Finite element discretization is employed in the cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number.The 3D ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform.The accuracy of the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum.A case study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the vibration frequency of the moving load is discussed.
文摘An unsteady three-dimensional analysis of the ventilation performance is carried out for different ventilation strategies to find out a ventilation method with a high performance in a subway tunnel.The natural ventilation performance associated with a train-induced air flow in a subway tunnel is examined.The dynamic layering method is used to consider the moving boundary of a train in the current CFD method.The geometries of the modeled tunnel and the subway train are partially based on those of the Seoul subway.The effects of the structure of the ventilation duct and the geometry of the partitions on the ventilation performance are evaluated.The results show that the combined ventilation ducts (to be designed),and the partitioning blocks installed along the middle of tunnel (already in existences) are helpful for air exchange.This study can provide some guidance for the design of ventilation ducts in a subway system.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
基金supported by the Fundamental Research Funds for the Central Universities(2023JBZD004)the National Natural Science Foundation of China(U2034204,52078031)the Science and Technology Development Project of cccC Harbin Metro Investment and Construction Co.,Ltd.(ZJHD-FW-2018-01-086).
文摘Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling.
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.
基金supported by the Shanghai Municipal Science and Technology Project,China(Grant No.21XD1430900)the Fundamental Research Funds for the Central Universities,the Top Discipline Plan of Shanghai Universities-Class I(Grant No.2022-3-YB-02)Open Research Project from Key Laboratory of Geotechnical and Underground Engineering,Tongji University,China(Grant No.KLE-TJGE-B2101).
文摘The surcharge load at the ground surface inevitably breaks the original equilibrium state between the underneath tunnel and the surrounding soil,which will impact the service performance of a subway tunnel.This paper presents a novel semi-analytical approach for assessing the time-dependent,longitudinal responses of a subway tunnel in soft soil strata induced by the surcharge load.The solution is developed based on the framework of the classical"two-stage method"but innovatively incorporates the effects of ground stratification,the consolidation process,and the longitudinal stiffness reduction of the lining.Biot’s poroelastic theory in conjunction with the Laplace-Fourier transform technique is selected to model the deformation of the stratified ground,while the Timoshenko beam on a Pasternak foundation is employed to model the mechanical responses of the tunnel.The proposed semi-analytical solution is validated not only by comparison with benchmark solutions and a finite element model,but also by predicting a well-documented field measurement.Parametric analyses are conducted to investigate the effects of the elastic modulus and the permeability coefficient of the stratified ground on the longitudinal responses of the tunnel.It is expected that the proposed solution can serve as a useful tool for evaluating the effects of the surcharge load on the longitudinal responses of a subway tunnel.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of China
文摘Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.
基金Project(50908234)supported by the National Natural Science Foundation of ChinaProject(2011CB710604)supported by the Basic Research Program of China
文摘According to the stress state of the crack surface, crack rock mass can be divided into complex composite tensile-shear fracture and composite compression-shear fracture from the perspective of fracture mechanics. By studying the hydraulic fracturing effect of groundwater on rock fracture, the tangential friction force equation of hydrodynamic pressure to rock fracture is deduced. The hydraulic fracturing of hydrostatic and hydrodynamic pressure to rock fracture is investigated to derive the equation of critical pressure when the hydraulic fracturing effect occurs in the rock fracture. Then, the crack angle that is most prone to hydraulic fracturing is determined. The relationships between crack direction and both lateral pressure coefficient and friction angle of the fracture surface are analyzed. Results show that considering the joint effect of hydrodynamic and hydrostatic pressure, the critical pressure does not vary with the direction of the crack when the surrounding rock stationary lateral pressure coefficient is equal to 1.0. Under composite tensile-shear fracture, the crack parallel to the direction of the main stress is the most prone to hydraulic fracturing. Under compression-shear fracture, the hydrodynamic pressure resulting in the most dangerous crack angle varies at different lateral pressure coefficients; this pressure decreases when the friction angle of the fracture surface increases. By referring to the subway tunnel collapse case, the impact of fractured rock mass hydraulic fracturing generated by hydrostatic and hydrodynamic pressure joint action is calculated and analyzed.