Traits that aid in the invasion process should exhibit a gradient across the expansion range in response to changing selection pressures. Aggression has been repeatedly associated with invasion success in many taxa, a...Traits that aid in the invasion process should exhibit a gradient across the expansion range in response to changing selection pressures. Aggression has been repeatedly associated with invasion success in many taxa, as it may help invaders to wrestle the resources from other species which enhances their success in a novel environment. However, aggression primarily al lows individuals to overcome conspecific rivals, providing advantages in competition over resources. Agonistic prowess could therefore increase fitness at both ends of the expansion gradient. Here we review the role of aggression in range expansion of in vasive species, and its potential role as a driver of range expansion. We analyze how these different mechanisms could affect trait variation in expanding and invasive populations. Specifically, we look at how aggression could help dilate the edges of a popula tion through niche competition, as well as lead to exclusion from the center (Le. areas of high population density) by the conspe cities. Both of these processes will result in a characteristic spatial distribution of phenotypes related to aggression that could provide insights into the ecological pressures and dynamics of expanding populations, potentially providing clues to their success as niche competitors and invasive species展开更多
Arbuscular mycorrhizal fungi(AMF)can increase host plant nutrient uptake via their mycelium,thus promoting plant growth.AMF have always been associated with successful invasion of most exotic plant species.However,kno...Arbuscular mycorrhizal fungi(AMF)can increase host plant nutrient uptake via their mycelium,thus promoting plant growth.AMF have always been associated with successful invasion of most exotic plant species.However,knowledge regarding how AMF affect the success of plant invasion remains limited.Exotic Ambrosia artemisiifolia is an invasive and mycorrhizal plant species.A long-term field experiment was conducted to examine the differences in AMF diversity and composition in the roots of A.artemisiifolia and Setaria viridis subjected to interspecific competition during growth.A greenhouse experiment was also performed to test the effect of Funneliformis mosseae on the growth of these two species.Ambrosia artemisiifolia invasion caused AMF diversity to change in native S.viridis roots.Meanwhile,the relative abundance of F.mosseae was significantly higher in the roots of A.artemisiifolia than in those of S.viridis.The higher AMF colonization rate in the exotic species(A.artemisiifolia)than in the native species(S.viridis)was found in both the field and greenhouse experiments.The greenhouse experiment possibly provided that AMF advantaged to the growth of A.artemisiifolia,by influencing its photosynthetic capacity as well as its phosphorus and potassium absorption.These observations highlight the important relationship of AMF with the successful invasion of A.artemisiifolia.展开更多
文摘Traits that aid in the invasion process should exhibit a gradient across the expansion range in response to changing selection pressures. Aggression has been repeatedly associated with invasion success in many taxa, as it may help invaders to wrestle the resources from other species which enhances their success in a novel environment. However, aggression primarily al lows individuals to overcome conspecific rivals, providing advantages in competition over resources. Agonistic prowess could therefore increase fitness at both ends of the expansion gradient. Here we review the role of aggression in range expansion of in vasive species, and its potential role as a driver of range expansion. We analyze how these different mechanisms could affect trait variation in expanding and invasive populations. Specifically, we look at how aggression could help dilate the edges of a popula tion through niche competition, as well as lead to exclusion from the center (Le. areas of high population density) by the conspe cities. Both of these processes will result in a characteristic spatial distribution of phenotypes related to aggression that could provide insights into the ecological pressures and dynamics of expanding populations, potentially providing clues to their success as niche competitors and invasive species
基金funded by the National Natural Science Foundation of China(grant no.31972343 and 31372000)Hebei National Natural Science Foundation(C2019201059)College of Life Science,Institute of Life Science and Green Development,Hebei University.
文摘Arbuscular mycorrhizal fungi(AMF)can increase host plant nutrient uptake via their mycelium,thus promoting plant growth.AMF have always been associated with successful invasion of most exotic plant species.However,knowledge regarding how AMF affect the success of plant invasion remains limited.Exotic Ambrosia artemisiifolia is an invasive and mycorrhizal plant species.A long-term field experiment was conducted to examine the differences in AMF diversity and composition in the roots of A.artemisiifolia and Setaria viridis subjected to interspecific competition during growth.A greenhouse experiment was also performed to test the effect of Funneliformis mosseae on the growth of these two species.Ambrosia artemisiifolia invasion caused AMF diversity to change in native S.viridis roots.Meanwhile,the relative abundance of F.mosseae was significantly higher in the roots of A.artemisiifolia than in those of S.viridis.The higher AMF colonization rate in the exotic species(A.artemisiifolia)than in the native species(S.viridis)was found in both the field and greenhouse experiments.The greenhouse experiment possibly provided that AMF advantaged to the growth of A.artemisiifolia,by influencing its photosynthetic capacity as well as its phosphorus and potassium absorption.These observations highlight the important relationship of AMF with the successful invasion of A.artemisiifolia.