Superabsorbent hydrogels were prepared successfully from N-succinyl chitosan grafted poly(acrylic acid-co-acrylamide). The potassium persulfate(KPS), N, N'-methylenebisacrylamide(MBA) were used as the initiator...Superabsorbent hydrogels were prepared successfully from N-succinyl chitosan grafted poly(acrylic acid-co-acrylamide). The potassium persulfate(KPS), N, N'-methylenebisacrylamide(MBA) were used as the initiator and crosslinker, respectively. Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM) were used to confirm the porous network structure of superabsorbent hydrogel. The effects of reaction parameters on the swelling behaviors of the superabsorbent hydrogels were investigated. The results indicated that water absorbency increased first, and then decreased gradually with the increase in the contents of monomer(AA+AM), KPS, MBA or acrylamide. The product had excellent water absorbency of 1375 g/g in distilled water and 83 g/g in 0.9wt% NaCl solution. Simultaneously, the superabsorbent hydrogels were p H sensitive. The antibacterial activities of the hydrogels against Escherichia coli(E. coli) were improved effectively because of polyamidoamine(PAMAM) dendrimer absorbed in the hydrogels.展开更多
Oxymatrine (OM)/N-succinyl-chitosan (Suc-Chi, with a degree of substitution being 0. 32) was synthesized via the ring-opening reaction of succinic anhydride with chitosan in dimethyl sulfoxide. OM-loaded Suc-Chi n...Oxymatrine (OM)/N-succinyl-chitosan (Suc-Chi, with a degree of substitution being 0. 32) was synthesized via the ring-opening reaction of succinic anhydride with chitosan in dimethyl sulfoxide. OM-loaded Suc-Chi nanoparticles were prepared by an ionotropic gelation process and OM was quantified via the HPLC method: The influences of the initial OM concentration on the nanoparticle characteristics and OM release behavior were evaluated. The nanoparticles were found to have a mean diameter within a range of 267-392 nm, a positive surface charge, and a zeta potential in the range of 19-27 inV. The formulation with an initial OM concentration of 100μg/mL provided the highest loaded capacity(0. 77% ) and the highest extent of the released OM (68% at 24 h), suggesting the possibility to achieve a therapeutic dose. According to the data obtained, this Suc-Chi-based nanotechnology will open up new and interesting prospects for the development of new anticancer drugs.展开更多
In the previous study, chitosan-succinyl-prednisolone conjugate microparticles (MP) were found to exhibit good efficacy and reduced toxicity nearly as well as their Eudragit L-coated microparticles (MP/EuL). This prop...In the previous study, chitosan-succinyl-prednisolone conjugate microparticles (MP) were found to exhibit good efficacy and reduced toxicity nearly as well as their Eudragit L-coated microparticles (MP/EuL). This proposes a question whether enteric-coating of MP is necessary or not. Although MP/EuL were already examined for their pharmacokinetic and gastrointestinal behaviors, MP have not been done yet. Therefore, in this study, MP were evaluated by investigating pharmacokinetic features in detail. MP with the in vitro features equivalent to those of the previous conjugate microparticles could be produced more readily in the modified preparative method. Pharmacokinetic and gastrointestinal behaviors of MP were investigated by intragastric dosing (5 mg PD eq./kg) to rats with 2,4,6-trinitrobenzenesulfonic acid-induced ulcerative colitis. The plasma concentration was suppressed extensively in MP as well as MP/EuL, supporting the reduction of PD systemic toxic side effects. However, the plasma level increased gradually up to 7 h in MP, but not in MP/EuL. At 8 h after dosing, MP were detected in the stomach to a fair extent, and free PD was found there, indicating that MP were subjected to trapping in the stomach probably due to positive charge of chitosan molecules. For MP, such prolonged localization and slow release of PD in the stomach were probably associated with the gradual increase in plasma concentration. Therefore, MP/EuL were evaluated to be superior to MP for effective targeting to ulcerative colitis. It is concluded that enteric-coating is very important for the targeting system using MP.展开更多
Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succini...Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succinic anhydride. The structure of the low molecular weight N-succinyl-chitosan was characterized by infrared spectroscopy(IR), by which —COCH_ 2CH_ 2COOH was proved to be introduced to the —NH_ 2 of the low molecular weight chitosan. The moisture adsorption and moisture retention capacities of the low molecular weight chitosan derivatives with different degrees of substitution were investigated. The results indicate that the moisture adsorption and moisture retention capacities of the low molecular weight N-succinyl-chitosan increase with the increase of the degree of substitution. When the degree of substitution is greater than 38%, the derivatives have better moisture adsorption and moisture retention capacities than hyaluronic acid.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51303145,51273156,and 51373130)
文摘Superabsorbent hydrogels were prepared successfully from N-succinyl chitosan grafted poly(acrylic acid-co-acrylamide). The potassium persulfate(KPS), N, N'-methylenebisacrylamide(MBA) were used as the initiator and crosslinker, respectively. Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM) were used to confirm the porous network structure of superabsorbent hydrogel. The effects of reaction parameters on the swelling behaviors of the superabsorbent hydrogels were investigated. The results indicated that water absorbency increased first, and then decreased gradually with the increase in the contents of monomer(AA+AM), KPS, MBA or acrylamide. The product had excellent water absorbency of 1375 g/g in distilled water and 83 g/g in 0.9wt% NaCl solution. Simultaneously, the superabsorbent hydrogels were p H sensitive. The antibacterial activities of the hydrogels against Escherichia coli(E. coli) were improved effectively because of polyamidoamine(PAMAM) dendrimer absorbed in the hydrogels.
文摘Oxymatrine (OM)/N-succinyl-chitosan (Suc-Chi, with a degree of substitution being 0. 32) was synthesized via the ring-opening reaction of succinic anhydride with chitosan in dimethyl sulfoxide. OM-loaded Suc-Chi nanoparticles were prepared by an ionotropic gelation process and OM was quantified via the HPLC method: The influences of the initial OM concentration on the nanoparticle characteristics and OM release behavior were evaluated. The nanoparticles were found to have a mean diameter within a range of 267-392 nm, a positive surface charge, and a zeta potential in the range of 19-27 inV. The formulation with an initial OM concentration of 100μg/mL provided the highest loaded capacity(0. 77% ) and the highest extent of the released OM (68% at 24 h), suggesting the possibility to achieve a therapeutic dose. According to the data obtained, this Suc-Chi-based nanotechnology will open up new and interesting prospects for the development of new anticancer drugs.
文摘In the previous study, chitosan-succinyl-prednisolone conjugate microparticles (MP) were found to exhibit good efficacy and reduced toxicity nearly as well as their Eudragit L-coated microparticles (MP/EuL). This proposes a question whether enteric-coating of MP is necessary or not. Although MP/EuL were already examined for their pharmacokinetic and gastrointestinal behaviors, MP have not been done yet. Therefore, in this study, MP were evaluated by investigating pharmacokinetic features in detail. MP with the in vitro features equivalent to those of the previous conjugate microparticles could be produced more readily in the modified preparative method. Pharmacokinetic and gastrointestinal behaviors of MP were investigated by intragastric dosing (5 mg PD eq./kg) to rats with 2,4,6-trinitrobenzenesulfonic acid-induced ulcerative colitis. The plasma concentration was suppressed extensively in MP as well as MP/EuL, supporting the reduction of PD systemic toxic side effects. However, the plasma level increased gradually up to 7 h in MP, but not in MP/EuL. At 8 h after dosing, MP were detected in the stomach to a fair extent, and free PD was found there, indicating that MP were subjected to trapping in the stomach probably due to positive charge of chitosan molecules. For MP, such prolonged localization and slow release of PD in the stomach were probably associated with the gradual increase in plasma concentration. Therefore, MP/EuL were evaluated to be superior to MP for effective targeting to ulcerative colitis. It is concluded that enteric-coating is very important for the targeting system using MP.
文摘Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succinic anhydride. The structure of the low molecular weight N-succinyl-chitosan was characterized by infrared spectroscopy(IR), by which —COCH_ 2CH_ 2COOH was proved to be introduced to the —NH_ 2 of the low molecular weight chitosan. The moisture adsorption and moisture retention capacities of the low molecular weight chitosan derivatives with different degrees of substitution were investigated. The results indicate that the moisture adsorption and moisture retention capacities of the low molecular weight N-succinyl-chitosan increase with the increase of the degree of substitution. When the degree of substitution is greater than 38%, the derivatives have better moisture adsorption and moisture retention capacities than hyaluronic acid.