The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two t...In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.展开更多
This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the a...This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the adoption process from becoming aware of solar pumping systems to testing them, i.e. using them at least once, and then continuing to use them over time. The results show that the main variables affecting awareness of the use of solar pumping systems (PV) are age, marital status, experience, access to credit, the farmer’s knowledge of climate change, the farmer’s origin in the Thiès region and length of time in the Niayes area. The first use of PVs is influenced by factors such as the size of the plot, the distance of the plot from the main road or from the market. Finally, the decision to adopt or continue use is influenced by gender, experience, household size and access to credit. Surprisingly, access to credit does not affect the first use of solar pumping systems, but plays a key role in their continued use.展开更多
It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production sche...It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.展开更多
Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PP...Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.展开更多
The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the...The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.展开更多
Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits ...Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.展开更多
We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be ...We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of ...China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of numerous mines,resulting in a marked increase in the number of such facilities.Parallel to this,China is vigorously advancing the development of a novel energy power system,aimed at transitioning the power sector from a high-carbon,fossil fuel-dependent paradigm to a low-carbon,clean energy footing.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated het...We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.展开更多
During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent...During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.展开更多
Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages,dedicated experimental tests were conducted with eight different valve opening conditions.The Pe...In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages,dedicated experimental tests were conducted with eight different valve opening conditions.The Pearson correlation coefficient was used to reveal the linear correlation between variables.According to the results,the stable rotational speed decreases with increasing valve opening(rotational speed decreases from approximately 1472 to 1453 r/min),while the stable shaft power exhibits an increasing trend(shaft power increases from approximately 0.242 to 0.390 kW).The stable time and zeroing time of each parameter during start-up and shutdown processes vary,with the flow zeroing time significantly increasing with the relative flow,reaching up to 10.468 s,while the shaft power zeroing time is roughly between 1.219 and 1.375 s.The results demonstrate that with increasing valve opening,the stable and zeroing time of flow significantly increase(|r|greater than 0.95),while the stable and zeroing time of rotational speed,power,and head display a smaller sensitivity on the valve opening(|r|less than 0.6).展开更多
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
文摘In the dry tropical zone where access to water is increasingly difficult for populations, solar pumping units are increasingly installed to provide water to population. In the local market, there are essentially two types of solar panels, namely monocrystalline and polycrystalline. However, the part of the local market is more dominated by the polycrystalline panel. In this work, comparative studies are carried out in order to characterize the two types of solar panels with regard to local constraints. Tests were carried out over the course of the sun to establish the performance of each type. The panels used have the same electrical characteristics and are connected to loads with same characteristics. Under the set operating conditions, the monocrystalline panel presents more performance than the polycrystalline panel. Although the local market is dominated by the polycrystalline panel, dust deposition tests on the surface of the panels show that the performance of the polycrystalline panel is more affected compared to the performance of the monocrystalline panel.
文摘This article examines the determinants of the adoption of solar pumping systems (PV) by vegetable farmers in the Niayes area of Senegal. To measure the determinants, we used a sequential logit model to translate the adoption process from becoming aware of solar pumping systems to testing them, i.e. using them at least once, and then continuing to use them over time. The results show that the main variables affecting awareness of the use of solar pumping systems (PV) are age, marital status, experience, access to credit, the farmer’s knowledge of climate change, the farmer’s origin in the Thiès region and length of time in the Niayes area. The first use of PVs is influenced by factors such as the size of the plot, the distance of the plot from the main road or from the market. Finally, the decision to adopt or continue use is influenced by gender, experience, household size and access to credit. Surprisingly, access to credit does not affect the first use of solar pumping systems, but plays a key role in their continued use.
基金supported by the Key Program of National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expensesof Ministry of Education (N100604001)Excellent Doctoral Dissertations Cultivation Project of Northeastern University
文摘It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.
文摘Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.
基金National Natural Science Foundation of China (No. 61975058)Blue Shield Technology Project,China (No. LD20170209)。
文摘The motion of particles in different channel Brownian pumps can be described by Langevin equations,and the pumping capacity is a useful indicator to demonstrate the strength of a pump’s transportation ability.Via the simulation,there is always an optimal value of temperature and unbiased external force for different pumps which make the concentration ratio between the right tube and left tube derive its maximum and minimum in two asymmetric tubes respectively.Besides,the concentration ratio will keep 1 regardless of radius,temperature or magnitude of force in the tube in a symmetric tube.To obtain more information about pumping capacity,exploring the average probability current(APC) of tubes in different conditions is necessary.Results indicate that as the concentration ratio is 1,the change of the APC when x_(0)=0 is similar to that when x_(0)=π.Also,when the concentration ratio is more than 1,there are optimal values of temperature,radius and magnitude of force where the APC gains a maximum,and the maximum decreases as the concentration in the right tube increases when x_(0)=0.
基金the National Natural Science Foundation of China(Grant No.11904194).
文摘Spin pumping(SP)and inverse spin Hall effect(ISHE)driven by parametrically-excited dipole-exchange spin waves in a yttrium iron garnet film have been systematically investigated.The measured voltage spectrum exhibits a feature of the field-induced transition from parallel pumping to perpendicular pumping because of the inhomogeneous excitation geometry.Thanks to the high precision of the SP-ISHE detection,two sets of fine structures in the voltage spectrum are observed,which can correspond well to two kinds of critical points in the multimode spin-wave spectrum for magnetic films.One is the q=0 point of each higher-order dispersion branch,and the other is the local minimum due to the interplay between the dipolar and exchange interactions.These fine structures on the voltage spectrum confirm the spin pumping by higher-order dipole-exchange spin-wave modes,and are helpful for probing the multimode spin-wave spectrum.
基金supported by the National Natural Science Foundation of China (Grant No. 12164030)the Major Program of the National Natural Science Foundation of China (Grant No. 12034020)+1 种基金Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101)the Talent Development Fund of Inner Mongolia, China。
文摘We report a high-average-power noise-like pulse(NLP) and dissipative soliton(DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
文摘China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of numerous mines,resulting in a marked increase in the number of such facilities.Parallel to this,China is vigorously advancing the development of a novel energy power system,aimed at transitioning the power sector from a high-carbon,fossil fuel-dependent paradigm to a low-carbon,clean energy footing.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
基金Project supported by the National Natural Science Foundation of China(NSFC)(Grant No.12004309)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ036)the Scientific Research Program funded by Shaanxi Provincial Education Department(Grant No.20JK0947).
文摘We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.
基金Project(52204101)supported by the National Natural Science Foundation of ChinaProject(ZR2022QE137)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLGDUEK2023)supported by the Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in China University of Mining&Technology,Beijing,China。
文摘During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金supported by Science and Technology Project of Quzhou(Grant Nos.2023K256,2023NC08)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZY21E050001)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages,dedicated experimental tests were conducted with eight different valve opening conditions.The Pearson correlation coefficient was used to reveal the linear correlation between variables.According to the results,the stable rotational speed decreases with increasing valve opening(rotational speed decreases from approximately 1472 to 1453 r/min),while the stable shaft power exhibits an increasing trend(shaft power increases from approximately 0.242 to 0.390 kW).The stable time and zeroing time of each parameter during start-up and shutdown processes vary,with the flow zeroing time significantly increasing with the relative flow,reaching up to 10.468 s,while the shaft power zeroing time is roughly between 1.219 and 1.375 s.The results demonstrate that with increasing valve opening,the stable and zeroing time of flow significantly increase(|r|greater than 0.95),while the stable and zeroing time of rotational speed,power,and head display a smaller sensitivity on the valve opening(|r|less than 0.6).