Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism ...Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin.展开更多
We compare, following Pati, global symmetries, our topological supersymmetric preon model with the heterotic E<sub>8</sub> × E<sub>8</sub> string theory. We include Pati’s supergravity ba...We compare, following Pati, global symmetries, our topological supersymmetric preon model with the heterotic E<sub>8</sub> × E<sub>8</sub> string theory. We include Pati’s supergravity based preon model in this work and compare the preon interactions of his model to ours. Based on preon-string symmetry comparison and preon phenomenological results, we conclude that the fundamental particles are likely preons rather than standard model particles. .展开更多
A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predicti...A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predictions are discussed.展开更多
BACKGROUND Traditional esophagogastroduodenoscopy(EGD),an invasive examination method,can cause discomfort and pain in patients.In contrast,magnetically controlled capsule endoscopy(MCE),a noninvasive method,is being ...BACKGROUND Traditional esophagogastroduodenoscopy(EGD),an invasive examination method,can cause discomfort and pain in patients.In contrast,magnetically controlled capsule endoscopy(MCE),a noninvasive method,is being applied for the detection of stomach and small intestinal diseases,but its application in treating esophageal diseases is not widespread.AIM To evaluate the safety and efficacy of detachable string MCE(ds-MCE)for the diagnosis of esophageal diseases.METHODS Fifty patients who had been diagnosed with esophageal diseases were pros-pectively recruited for this clinical study and underwent ds-MCE and conven-tional EGD.The primary endpoints included the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for patients with esophageal diseases.The secondary endpoints consisted of visualizing the esophageal and dentate lines,as well as the subjects'tolerance of the procedure.RESULTS Using EGD as the gold standard,the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for esophageal disease detection were 85.71%,86.21%,81.82%,89.29%,and 86%,respectively.ds-MCE was more comfortable and convenient than EGD was,with 80%of patients feeling that ds-MCE examination was very comfortable or comfortable and 50%of patients believing that detachable string v examination was very convenient.CONCLUSION This study revealed that ds-MCE has the same diagnostic effects as traditional EGD for esophageal diseases and is more comfortable and convenient than EGD,providing a novel noninvasive method for treating esophageal diseases.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined functi...The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined function embedded.The rotation angular velocities before and after the critical rotation angular velocity were used as independent variables,and the reduced velocity range was 3-14.Fluid-structure coupling was realized based on the dynamic overset grid and the SST k-ωturbulence model.Results reveal that the dynamic response of the riserless drill string was considerably affected by rotation and flow velocity,which are coupled with each other.The cross-flow average dimensionless displacement increased with the rotation angular velocity,and rotation considerably enhanced the in-line maximum average dimensionless displacement.However,the cross-flow amplitude caused by vortex-induced vibration was suppressed when the rotation angular velocity reached a certain value.The in-line and cross-flow frequencies were the same,thereby causing the trajectory to deviate from the standard'figure-eight'shape and become a closed circle shape.The vortex did not fall behind the cylinder at low reduced velocity with high-rotation angular velocity,and the structure of the near-wake vortex remained U-shaped.The wake of the cylinder was deflected along the cross-flow direction,thereby leading to vibration asymmetry and resulting in increased vibration instability and disordered vibration trajectories,especially at high-rotation angular velocities.展开更多
The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has b...The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump.Such analysis has been conducted for a real drilling well,taking into account the process of lifting,lowering,unblocking and water plugging.Comparison between field measured data and simulation data indicates that the model is reliable and accurate.The packer creep effect under different pressure differences has also been investigated in the framework of the same model.展开更多
Data centers are being distributed worldwide by cloud service providers(CSPs)to save energy costs through efficient workload alloca-tion strategies.Many CSPs are challenged by the significant rise in user demands due ...Data centers are being distributed worldwide by cloud service providers(CSPs)to save energy costs through efficient workload alloca-tion strategies.Many CSPs are challenged by the significant rise in user demands due to their extensive energy consumption during workload pro-cessing.Numerous research studies have examined distinct operating cost mitigation techniques for geo-distributed data centers(DCs).However,oper-ating cost savings during workload processing,which also considers string-matching techniques in geo-distributed DCs,remains unexplored.In this research,we propose a novel string matching-based geographical load balanc-ing(SMGLB)technique to mitigate the operating cost of the geo-distributed DC.The primary goal of this study is to use a string-matching algorithm(i.e.,Boyer Moore)to compare the contents of incoming workloads to those of documents that have already been processed in a data center.A successful match prevents the global load balancer from sending the user’s request to a data center for processing and displaying the results of the previously processed workload to the user to save energy.On the contrary,if no match can be discovered,the global load balancer will allocate the incoming workload to a specific DC for processing considering variable energy prices,the number of active servers,on-site green energy,and traces of incoming workload.The results of numerical evaluations show that the SMGLB can minimize the operating expenses of the geo-distributed data centers more than the existing workload distribution techniques.展开更多
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le...The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).展开更多
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells...To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.展开更多
文摘Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin.
文摘We compare, following Pati, global symmetries, our topological supersymmetric preon model with the heterotic E<sub>8</sub> × E<sub>8</sub> string theory. We include Pati’s supergravity based preon model in this work and compare the preon interactions of his model to ours. Based on preon-string symmetry comparison and preon phenomenological results, we conclude that the fundamental particles are likely preons rather than standard model particles. .
文摘A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predictions are discussed.
基金the Science and Technology Commission of Shanghai,No.18DZ1930309.
文摘BACKGROUND Traditional esophagogastroduodenoscopy(EGD),an invasive examination method,can cause discomfort and pain in patients.In contrast,magnetically controlled capsule endoscopy(MCE),a noninvasive method,is being applied for the detection of stomach and small intestinal diseases,but its application in treating esophageal diseases is not widespread.AIM To evaluate the safety and efficacy of detachable string MCE(ds-MCE)for the diagnosis of esophageal diseases.METHODS Fifty patients who had been diagnosed with esophageal diseases were pros-pectively recruited for this clinical study and underwent ds-MCE and conven-tional EGD.The primary endpoints included the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for patients with esophageal diseases.The secondary endpoints consisted of visualizing the esophageal and dentate lines,as well as the subjects'tolerance of the procedure.RESULTS Using EGD as the gold standard,the sensitivity,specificity,positive predictive value,negative predictive value,and diagnostic accuracy of ds-MCE for esophageal disease detection were 85.71%,86.21%,81.82%,89.29%,and 86%,respectively.ds-MCE was more comfortable and convenient than EGD was,with 80%of patients feeling that ds-MCE examination was very comfortable or comfortable and 50%of patients believing that detachable string v examination was very convenient.CONCLUSION This study revealed that ds-MCE has the same diagnostic effects as traditional EGD for esophageal diseases and is more comfortable and convenient than EGD,providing a novel noninvasive method for treating esophageal diseases.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金supported by the National Natural Science Foundation of China(No.U2006226)the National Key Research and Development Program of China(No.2016YFC0303800)。
文摘The mechanical behavior,dynamic evolution,and flow-field distribution of a two-degree-of-freedom riserless drill string were simulated numerically by using FLUENT fluid simulation software with the user-defined function embedded.The rotation angular velocities before and after the critical rotation angular velocity were used as independent variables,and the reduced velocity range was 3-14.Fluid-structure coupling was realized based on the dynamic overset grid and the SST k-ωturbulence model.Results reveal that the dynamic response of the riserless drill string was considerably affected by rotation and flow velocity,which are coupled with each other.The cross-flow average dimensionless displacement increased with the rotation angular velocity,and rotation considerably enhanced the in-line maximum average dimensionless displacement.However,the cross-flow amplitude caused by vortex-induced vibration was suppressed when the rotation angular velocity reached a certain value.The in-line and cross-flow frequencies were the same,thereby causing the trajectory to deviate from the standard'figure-eight'shape and become a closed circle shape.The vortex did not fall behind the cylinder at low reduced velocity with high-rotation angular velocity,and the structure of the near-wake vortex remained U-shaped.The wake of the cylinder was deflected along the cross-flow direction,thereby leading to vibration asymmetry and resulting in increased vibration instability and disordered vibration trajectories,especially at high-rotation angular velocities.
文摘The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield.The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump.Such analysis has been conducted for a real drilling well,taking into account the process of lifting,lowering,unblocking and water plugging.Comparison between field measured data and simulation data indicates that the model is reliable and accurate.The packer creep effect under different pressure differences has also been investigated in the framework of the same model.
文摘Data centers are being distributed worldwide by cloud service providers(CSPs)to save energy costs through efficient workload alloca-tion strategies.Many CSPs are challenged by the significant rise in user demands due to their extensive energy consumption during workload pro-cessing.Numerous research studies have examined distinct operating cost mitigation techniques for geo-distributed data centers(DCs).However,oper-ating cost savings during workload processing,which also considers string-matching techniques in geo-distributed DCs,remains unexplored.In this research,we propose a novel string matching-based geographical load balanc-ing(SMGLB)technique to mitigate the operating cost of the geo-distributed DC.The primary goal of this study is to use a string-matching algorithm(i.e.,Boyer Moore)to compare the contents of incoming workloads to those of documents that have already been processed in a data center.A successful match prevents the global load balancer from sending the user’s request to a data center for processing and displaying the results of the previously processed workload to the user to save energy.On the contrary,if no match can be discovered,the global load balancer will allocate the incoming workload to a specific DC for processing considering variable energy prices,the number of active servers,on-site green energy,and traces of incoming workload.The results of numerical evaluations show that the SMGLB can minimize the operating expenses of the geo-distributed data centers more than the existing workload distribution techniques.
文摘The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).
基金supported jointly by one of the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501)the special project for hydrate from China Geological Survey“Trial Production Implementation for Natural Gas Hydrate in Shenhu Pilot Test Area”(DD20190226)。
文摘To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.