期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dendrimer-induced synthesis of porous organosilica capsules for enzyme encapsulation
1
作者 Ziyi Chu Boyu Zhang +5 位作者 Zhenhua Wu Jiaxu Zhang Yiran Cheng Xueying Wang Jiafu Shi Zhongyi Jiang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第4期41-48,共8页
Organic matter-induced mineralization is a green and versatile method for synthesizing hybrid nanostructured materials,where the material properties are mainly influenced by the species of natural biomolecules,linear ... Organic matter-induced mineralization is a green and versatile method for synthesizing hybrid nanostructured materials,where the material properties are mainly influenced by the species of natural biomolecules,linear synthetic polymer,or small molecules,limiting their diversity.Herein,we adopted dendrimer poly(amidoamine)(PAMAM)as the inducer to synthesize organosilica-PAMAM network(OSPN)capsules for mannose isomerase(MIase)encapsulation based on a hard-templating method.The structure of OSPN capsules can be precisely regulated by adjusting the molecular weight and concentration of PAMAM,thereby demonstrating a substantial impact on the kinetic behavior of the MIase@OSPN system.The MIase@OSPN system was used for catalytic production of mannose from Dfructose.A mannose yield of 22.24% was obtained,which is higher than that of MIase in organosilica network capsules and similar to that of the free enzyme.The overall catalytic efficiency(kcat/Km)of the MIase@OSPN system for the substrate D-fructose was up to 0.556 s^(-1)·mmol^(-1)·L.Meanwhile,the MIase@OSPN system showed excellent stability and recyclability,maintaining more than 50% of the yield even after 12 cycles. 展开更多
关键词 enzyme immobilization enzyme catalysis organosilica networks CAPSULES sugar biosynthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部