Lentinan samples,(1→3)-β-D-glucans containing 4.6-15.2 wt% proteins,coded as L-I_1 L-I_2 L-I_3 and L-I_4(L-I)were isolated from four kinds of Lentinus edodes.These glucans were treated with acetone to remove the pro...Lentinan samples,(1→3)-β-D-glucans containing 4.6-15.2 wt% proteins,coded as L-I_1 L-I_2 L-I_3 and L-I_4(L-I)were isolated from four kinds of Lentinus edodes.These glucans were treated with acetone to remove the protein in orderto obtain free protein glucans coded as LNP-I_1,LNP-I_2.LNP-I_3 and LNP-I_4(LNP-I).The free-protein polysaccharideswere sulfated to give derivatives(S-LNP-I)with degree of substitution(DS)from 0.4-0.8.The structural features andweight-average molecular weight(M_w)of the samples were investigated by using infrared spectroscopy,elemental analysis,^(13)C-NMR,size exclusion chromatography combined with laser light scattering(SEC-LLS)and viscometry.The effects ofstructure and conformation of the polysaccharides on antitumor activities were assayed in vivo(Sarcoma 180 solid tumors)and in vitro(Sarcoma 180,HL-60,MCF-7 and Vero tumors).The results indicated that the predominant species of thesamples L-I and LNP-I in 0.2 mol/L NaCl aqueous solution existed as triple-helical chains with high rigidity and in dimethylsulfoxide(DMSO)as single-flexible chains.Interestingly,the antitumor activities of LNP-I are lower than those of the nativeglucans(L-I),whereas their sulfated derivatives have higher inhibition ratio against Sarcoma 180 than LNP-I.The resultsreveal that the binding of protein,sulfated modification and the triple helix conformation are important factors in theenhancement of the antitumor activities of polysaccharides on the whole.展开更多
Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wista...Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.展开更多
AIM: To observe the biotransformation process of a Chinese compound, aesculin, by human gut bacteria, and to identify its metabolites in rat urine.METHODS: Representative human gut bacteria were collected from 20 he...AIM: To observe the biotransformation process of a Chinese compound, aesculin, by human gut bacteria, and to identify its metabolites in rat urine.METHODS: Representative human gut bacteria were collected from 20 healthy volunteers, and then utilized in vitro to biotransform aesculin under anaerobic conditions. At 0, 2, 4, 8, 12, 16, 24, 48 and 72 h postincubation, 10 mL of culture medium was collected. Metabolites of aesculin were extracted 3 × from rat urine with methanol and analyzed by HPLC. For in vivo metabolite analysis, aesculetin (100 mg/kg) was administered to rats via stomach gavage, rat urine was collected from 6 to 48 h post-administration, and metabolite analysis was performed by LC/ESI-MS and MS/MS in the positive and negative modes.RESULTS: Human gut bacteria could completely convert aesculin into aesculetin in vitro. The biotransformation process occurred from 8 to 24 h post-incubation, with its highest activity was seen from 8 to 12 h. The in vitro process was much slower than the in vivo process. In contrast to the in vitro model, six aesculetin metabolites were identified in rat urine, including 6-hydroxy-7-glucocoumarin(M1), 6-hydroxy-7-sulf-coumarin (M2), 6, 7-digluco-coumarin (M3), 6-glc-7-gluco-coumarin (M4), 6-O-methyl-7-gluco-coumarin (MS) and 6-O-methyl-7- sulf-coumarin (M6). Of which, M2 and M6 were novel metabolites.CONCLUSION: Aesculin can be transferred into aesculetin by human gut bacteria and is further modified by the host in vivo. The diverse metabolites of aesculin may explain its pleiotropic pharmaceutical effects.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.20074025).
文摘Lentinan samples,(1→3)-β-D-glucans containing 4.6-15.2 wt% proteins,coded as L-I_1 L-I_2 L-I_3 and L-I_4(L-I)were isolated from four kinds of Lentinus edodes.These glucans were treated with acetone to remove the protein in orderto obtain free protein glucans coded as LNP-I_1,LNP-I_2.LNP-I_3 and LNP-I_4(LNP-I).The free-protein polysaccharideswere sulfated to give derivatives(S-LNP-I)with degree of substitution(DS)from 0.4-0.8.The structural features andweight-average molecular weight(M_w)of the samples were investigated by using infrared spectroscopy,elemental analysis,^(13)C-NMR,size exclusion chromatography combined with laser light scattering(SEC-LLS)and viscometry.The effects ofstructure and conformation of the polysaccharides on antitumor activities were assayed in vivo(Sarcoma 180 solid tumors)and in vitro(Sarcoma 180,HL-60,MCF-7 and Vero tumors).The results indicated that the predominant species of thesamples L-I and LNP-I in 0.2 mol/L NaCl aqueous solution existed as triple-helical chains with high rigidity and in dimethylsulfoxide(DMSO)as single-flexible chains.Interestingly,the antitumor activities of LNP-I are lower than those of the nativeglucans(L-I),whereas their sulfated derivatives have higher inhibition ratio against Sarcoma 180 than LNP-I.The resultsreveal that the binding of protein,sulfated modification and the triple helix conformation are important factors in theenhancement of the antitumor activities of polysaccharides on the whole.
基金supported by the National High Technology Research and Development Program of China (863 Program 2006AA090401)
文摘Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.
基金Supported by Department of Traditional Chinese Medicine,Sichuan Province,No.03JY-002
文摘AIM: To observe the biotransformation process of a Chinese compound, aesculin, by human gut bacteria, and to identify its metabolites in rat urine.METHODS: Representative human gut bacteria were collected from 20 healthy volunteers, and then utilized in vitro to biotransform aesculin under anaerobic conditions. At 0, 2, 4, 8, 12, 16, 24, 48 and 72 h postincubation, 10 mL of culture medium was collected. Metabolites of aesculin were extracted 3 × from rat urine with methanol and analyzed by HPLC. For in vivo metabolite analysis, aesculetin (100 mg/kg) was administered to rats via stomach gavage, rat urine was collected from 6 to 48 h post-administration, and metabolite analysis was performed by LC/ESI-MS and MS/MS in the positive and negative modes.RESULTS: Human gut bacteria could completely convert aesculin into aesculetin in vitro. The biotransformation process occurred from 8 to 24 h post-incubation, with its highest activity was seen from 8 to 12 h. The in vitro process was much slower than the in vivo process. In contrast to the in vitro model, six aesculetin metabolites were identified in rat urine, including 6-hydroxy-7-glucocoumarin(M1), 6-hydroxy-7-sulf-coumarin (M2), 6, 7-digluco-coumarin (M3), 6-glc-7-gluco-coumarin (M4), 6-O-methyl-7-gluco-coumarin (MS) and 6-O-methyl-7- sulf-coumarin (M6). Of which, M2 and M6 were novel metabolites.CONCLUSION: Aesculin can be transferred into aesculetin by human gut bacteria and is further modified by the host in vivo. The diverse metabolites of aesculin may explain its pleiotropic pharmaceutical effects.