Groundwater from karst subterranean streams is among the world's most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and pe...Groundwater from karst subterranean streams is among the world's most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes' sources is very important to ensure the normal function of life support systems. In this paper, thirty-five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca (Mg)-HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca-SO4 type (G25 site) or Ca-HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 ~tmmol/L, and the STSr/S6Sr varied from 0.70751 to 0.71627. The j34S-SO42- fell into a range of-6.8%o-21.5%o, with a mean value of 5.6%o. The variations of both 87Sr/S6Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of STSr/S6Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the j34S value of potential sulfate sources. The variations of both j34S and 1/ SO42- values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sulfide mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sulfide mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.展开更多
To investigate the role of sulfuric acid-based carbonate weathering in global CO_2 sequestration of climate changes, we systematically discussed the pathway of sulfuric acid in rock chemical weathering and its feedbac...To investigate the role of sulfuric acid-based carbonate weathering in global CO_2 sequestration of climate changes, we systematically discussed the pathway of sulfuric acid in rock chemical weathering and its feedback mechanism for global warming. We showed the methods used to determine the accurate amount of sulfate flux,accounting for the sulfuric acid resulted from sulfide oxidation. Finally, we pointed out some prospects for further detailed work on the exact calculation of the sulfate fluxes for the CO_2 net-release.展开更多
The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases i...The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions.However,carbon-sulfur isotope cycling of the global SPICE event,which may be controlled by global and regional events,is still poorly understood,especially in south China.Therefore,theδ13CPDB,δ18OPDBδ34S_(CAS),total carbon(TC),total organic carbon(TOC)and total sulfate(TS)of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.Theδ34S_(CAS)values in the onset and rising limb are not obviously higher than that in the preceding SPICE,meanwhile sulfate(δ34S_(CAS))isotope values increase slightly with increasingδ13CPDB in rising limb and near peak of SPICE(130–160 m).The sulfate(δ34S_(CAS))isotope values gradually decrease from 48.6‰to 18‰in the peak part of SPICE and even increase from 18%to 38.5%in the descending limb of SPICE.The abnormal asynchronous C−S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction,and it was also influenced by regional events such as enhanced siliciclastic provenance input(sulfate),weathering of a carbonate platform and sedimentary environment.Sedimentary environment and lithology are not the main reason for global SPICE event but influence theδ13CPDB excursion-amplitude of SPICE.Sea level eustacy and carbonate platform weathering probably made a major contribution to theδ13CPDB excursion during the SPICE,in particularly,near peak of SPICE.Besides,the trilobite extinctions,anoxia,organic-matter burial and siliciclastic provenance input also play an important role in the onset,early and late stage of SPICE event.展开更多
基金supported by the National Natural Science Foundation of China(No:41072192)the Natural Science Foundation Project of Chongqing,CSTC(No. CSTC2010BC7004)+2 种基金the Special Fund for Public Benefit Scientific Research of Ministry of Land and Resources of China(201111022)the Guangxi Natural Science Foundation Project(2012GXNSFBA053137)IGCP/ SIDA 598 Project
文摘Groundwater from karst subterranean streams is among the world's most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes' sources is very important to ensure the normal function of life support systems. In this paper, thirty-five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca (Mg)-HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca-SO4 type (G25 site) or Ca-HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 ~tmmol/L, and the STSr/S6Sr varied from 0.70751 to 0.71627. The j34S-SO42- fell into a range of-6.8%o-21.5%o, with a mean value of 5.6%o. The variations of both 87Sr/S6Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of STSr/S6Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the j34S value of potential sulfate sources. The variations of both j34S and 1/ SO42- values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sulfide mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sulfide mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.
基金supported jointly by the National Natural Science Foundation of China(Grant No.41573095,41173030,4161101324)
文摘To investigate the role of sulfuric acid-based carbonate weathering in global CO_2 sequestration of climate changes, we systematically discussed the pathway of sulfuric acid in rock chemical weathering and its feedback mechanism for global warming. We showed the methods used to determine the accurate amount of sulfate flux,accounting for the sulfuric acid resulted from sulfide oxidation. Finally, we pointed out some prospects for further detailed work on the exact calculation of the sulfate fluxes for the CO_2 net-release.
基金the open fund of State Key Laboratory of Biogeology and Environmental Geology(No.GBL21506)the National Natural Science Foundation of China(Grant Nos.42072140 and 42102133)+2 种基金Chongqing Natural Science Foundation of China(No.cstc2020jcyj msxmX0217)Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJZD-M202101502 and KJQN202001517)Chongqing University of Science and Technology(No.ckrc2019035).
文摘The positive S-isotopic excursion of carbonate-associated sulfate(δ34S_(CAS))is generally in phase with the Steptoean positive carbon isotope excursion(SPICE),which may reflect widespread,global,transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions.However,carbon-sulfur isotope cycling of the global SPICE event,which may be controlled by global and regional events,is still poorly understood,especially in south China.Therefore,theδ13CPDB,δ18OPDBδ34S_(CAS),total carbon(TC),total organic carbon(TOC)and total sulfate(TS)of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.Theδ34S_(CAS)values in the onset and rising limb are not obviously higher than that in the preceding SPICE,meanwhile sulfate(δ34S_(CAS))isotope values increase slightly with increasingδ13CPDB in rising limb and near peak of SPICE(130–160 m).The sulfate(δ34S_(CAS))isotope values gradually decrease from 48.6‰to 18‰in the peak part of SPICE and even increase from 18%to 38.5%in the descending limb of SPICE.The abnormal asynchronous C−S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction,and it was also influenced by regional events such as enhanced siliciclastic provenance input(sulfate),weathering of a carbonate platform and sedimentary environment.Sedimentary environment and lithology are not the main reason for global SPICE event but influence theδ13CPDB excursion-amplitude of SPICE.Sea level eustacy and carbonate platform weathering probably made a major contribution to theδ13CPDB excursion during the SPICE,in particularly,near peak of SPICE.Besides,the trilobite extinctions,anoxia,organic-matter burial and siliciclastic provenance input also play an important role in the onset,early and late stage of SPICE event.