Sulfide ion can reduce the viscosity of polymer solution. The higher the concentration of sulfide ion is, the greater the effect of viscosity on polymer is, and it directly affects oil recovery rate. Some methods for ...Sulfide ion can reduce the viscosity of polymer solution. The higher the concentration of sulfide ion is, the greater the effect of viscosity on polymer is, and it directly affects oil recovery rate. Some methods for removing sulfide were studied by adding the oxidizing substances. Each method had certain effect on removing sulfide. The addition of hydrogenperoxide in the solution makes it faster to remove sulfide than flowing air in it, although the removal of sulfide is still not complete. This removal is quick when ozone takes part in, and it will spend much time with the increased volume of solution. The extent of removing sulfide was mainly related to the oxidability of re- moved substances. The stronger the oxidability of oxidizing substances was, the better the performance for sulfide removing was. In addition, part of sulfate radical in oilfield sewage could be removed by nanofiltration membrane. Removal efficiency of sulfate radical is about 50%. The probability may be avoided that sulfate radical was reduced into sulfide by the sulfate-reducing bacteria (SRB) in sewage. This method could radically reduce the presence of the reduction of sulfur in sewage, and it can reduce the corrosion of underground oil pipeline.展开更多
基金Project supported by the Natural Science Foundation of Liaoning Province (No. 20092068), the Department of Education Key Laboratory of Liaoning Province (No. 2009S098) and the Shenyang Large Equipment Shared Services (No. 090044).
文摘Sulfide ion can reduce the viscosity of polymer solution. The higher the concentration of sulfide ion is, the greater the effect of viscosity on polymer is, and it directly affects oil recovery rate. Some methods for removing sulfide were studied by adding the oxidizing substances. Each method had certain effect on removing sulfide. The addition of hydrogenperoxide in the solution makes it faster to remove sulfide than flowing air in it, although the removal of sulfide is still not complete. This removal is quick when ozone takes part in, and it will spend much time with the increased volume of solution. The extent of removing sulfide was mainly related to the oxidability of re- moved substances. The stronger the oxidability of oxidizing substances was, the better the performance for sulfide removing was. In addition, part of sulfate radical in oilfield sewage could be removed by nanofiltration membrane. Removal efficiency of sulfate radical is about 50%. The probability may be avoided that sulfate radical was reduced into sulfide by the sulfate-reducing bacteria (SRB) in sewage. This method could radically reduce the presence of the reduction of sulfur in sewage, and it can reduce the corrosion of underground oil pipeline.