期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Calculation of salt-frost heave of sulfate saline soil due to long-term freeze−thaw cycles 被引量:1
1
作者 Tao Wen Sai Ying FengXi Zhou 《Research in Cold and Arid Regions》 CSCD 2020年第5期284-294,共11页
Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-fro... Based on salt-frost heave tests of sulfate saline soil under repeated freeze−thaw cycles,this paper discusses the mechanism of the salt-frost heave under long-term freeze−thaw cycles.The results show that the salt-frost heave can be restricted considerably by loads,and there is a critical load for the salt-frost heave cumulative effect.Under this load,peak values of salt-frost heave approach a constant,and the residual values become 0.There is no longer structure heave or cumulative effect of saline soil exposed to freeze−thaw cycles under the critical load.Taking cumulative effect into account in calculations of salt-frost heave,a salt-frost heave model under freeze−thaw cycles is developed. 展开更多
关键词 sulfate saline soil freeze−thaw cycles LOAD salt-frost heave
下载PDF
Thermal-water-salt coupling process of unsaturated saline soil under unidirectional freezing 被引量:4
2
作者 LUO Chong-liang YU Yun-yan +3 位作者 ZHANG Jing TAO Jing-yan OU Qing-jie CUI Wen-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第2期557-569,共13页
Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation... Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation,the thermal-water-salt coupling mathematical model of unsaturated frozen saline soil was established.The model considered the latent heat of phase change,crystallization impedance,crystallization consumption and complete precipitation of solute crystallization in ice.In order to verify the rationality of the model,the unidirectional freezing test of unsaturated saline soil was carried out in an open system with no-pressure water supplement to obtain the spatial distribution of temperature,moisture and salt in the saline soil.Finally,numerical simulations are implemented with the assistance of COMSOL Multiphysics.Validation of the model is illustrated by comparisons between the simulation and experimental data.The results demonstrated that the temperature within saline soil changes with time and can be divided into three stages,namely quick freezing stage,transitional stage and stable stage.The water and salt contents in the freezing zone are layered,with peak values at the freezing front.The coupled model could reveal the heat-mass migration mechanism of unsaturated frozen saline soil and dynamically describe the freezing depth and the movement law of the freezing front,ice and salt crystal formation mechanism,and the change law of thermal conductivity and permeability coefficient. 展开更多
关键词 Unsaturated sulfate saline soil Watersalt migration Crystallization latent heat Crystallization impedance Mathematical model
下载PDF
An experimental study of salt expansion in sodium saline soils under transient conditions 被引量:11
3
作者 WAN Xusheng YOU Zhemin +1 位作者 WEN Haiyan William CROSSLEY 《Journal of Arid Land》 SCIE CSCD 2017年第6期865-878,共14页
Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temp... Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils. 展开更多
关键词 sulfate saline soil supersaturation ratio ionic model cooling rate salt expansion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部