期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal Dearsenification Parameters of Gold Sulfide Concentrate with a High As Content
1
作者 YaozhongLAN RoseW.Smith 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期274-276,共3页
The gold sulfide concentrate with a high As content in Liangshan District, Sichuan Province, China, is a potentially important resource. This paper describes experiments of dearsenification of gold concentrate in a we... The gold sulfide concentrate with a high As content in Liangshan District, Sichuan Province, China, is a potentially important resource. This paper describes experiments of dearsenification of gold concentrate in a weakly reduced atmosphere in a rotary pipe furnace. The results showed that the optimal parameters were a temperature range of 650-700℃, 15%-16% CO2 of gas and a reaction time of 30-40 min. The removal rate of arsenic and sulfur was over 95% and 25%-28%, respectively. With further oxidization and roasting, residue sulfur in the roasted materials was dropped to below 4%, and the cyanide leaching recovery of gold was over 92%. 展开更多
关键词 Gold sulfide concentrate with a high As content Weakly reduced atmosphere Dearsenification
下载PDF
Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels 被引量:13
2
作者 Meng-long Li Fu-ming Wang +3 位作者 Chang-rong Li Zhan-bing Yang Qing-yong Meng and Su-fen Tao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期589-597,共9页
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t... The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels. 展开更多
关键词 medium carbon steels cooling rate aluminum content manganese sulfide formation mechanisms
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部