This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid produ...This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.展开更多
The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and h...The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.展开更多
The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactor...The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactors at 70℃.Introducing M.sedula copA mutant,a copper sensitive derivative,only had negligible effects on bioleaching.While introducing M.sedula ARS50-2,a Cu^2+resistant strain,substantially consolidated bioleaching process,with 27.77%more copper recovered after 58 d of bioleaching.Addition of M.sedula ARS50-2 likely enhanced the sulfur oxidation capacity of consortium after the 24th day under the Cu^2+stress.The majority of extreme thermoacidophiles were attached on minerals surface as indicated by quantitative PCR(qPCR)data.Successions of microbial community of extremely thermoacidophilic consortia that attached on surface of minerals were different from those in leachate.M.hakonensis HO1-1 was the dominant species attached on minerals surface in each column reactor throughout bioleaching process.The sessile M.sedula ARS50-2 remained as a major species till the 34th day.A.brierleyi DSM1651 was the most abundant planktonic species in leachate of each column reactor.These results highlight that higher Cu^2+-resistance is a beneficial trait for extreme thermoacidophiles to process copper minerals.展开更多
A model GM (grey model) (1,1) for forecasting the rate of copper extraction during the bioleaching of primary sulphide ore was established on the basis of the mathematical theory and the modeling process of grey s...A model GM (grey model) (1,1) for forecasting the rate of copper extraction during the bioleaching of primary sulphide ore was established on the basis of the mathematical theory and the modeling process of grey system theory. It was used for forecasting the rate of copper extraction from the primary sulfide ore during a laboratory microbial column leaching experiment. The precision of the forecasted results were examined and modified via "posterior variance examination". The results show that the forecasted values coincide with the experimental values. GM (1,1) model has high forecast accuracy; and it is suitable for simulation control and prediction analysis of the original data series of the processes that have grey characteristics, such as mining, metallurgical and mineral processing, etc. The leaching rate of such copper sulphide ore is low. The grey forecasting result indicates that the rate of copper extraction is approximately 20% even after leaching for six months.展开更多
Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate...Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching,which may be mainly realized through reducing the passivation layer formed by Fe3+hydrolysis.Improved copper recovery(78.35%)and bacteria concentration(9.56×10^(7)cells·mL^(−1))were yielded in the presence of 5 g·L^(−1)AWF.The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF.Bacteria proportion,such as Acidithiobacillus ferrooxidans,Moraxella osloensis,and Lactobacillus acetotolerans changed distinctly.Great difference between samples was showed according to beta diversity index,and the maximum value reached 0.375.Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process,and that of sample in the presence of 5 g·L^(−) AWF reached 28.63%.The results should show reference to application of agricultural wastes and low grade copper sulfide ores.展开更多
The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural...The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.展开更多
For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to...For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.展开更多
This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measu...This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measurements werecarried out to investigate the selective depression mechanism of DBT on chalcopyrite.Zeta potential and FTIR measurementsrevealed that DBT had higher affinity for chalcopyrite than molybdenite and the XPS results of chalcopyrite before and aftertreatment with DBT further proved that DBT adsorbed on chalcopyrite surface.The investigation indicates that the mechanism ofDBT adsorbing on chalcopyrite is mainly physical adsorption.Locked circuit experiments were carried out and the results showedthat DBT could be considered as a cleaner option in commercial Cu?Mo flotation separation circuits.展开更多
文摘This article reports the study on acid equilibrium during bioleaching of alkaline low-grade copper sulfide ore. Adding auxiliary agents 1# (sulfur) and 2# (pyrite) makes bacterial leaching of copper and acid production carried out simultaneously because the auxiliary agents can be oxidized by bacteria and the oxidation products involve acid. The acid required for dissolving alkaline gangue during bacterial leaching is produced, and acid equilibrium is reached during the ore bio-leaching. The recovery of copper reaches more than 95%.
基金Project(2012AA061501)supported by the National High-tech Research and Development Program of ChinaProject(20120162120010)supported by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金Project(NCET-13-0595)supported by the program for New Century Excellent Talents in University of ChinaProject(51374248)supported by the National Natural Science Foundation of ChinaProject(2010CB630905)supported by the National Key Basic Research Program of China
文摘The grown conditions of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans were investigated,and then experiments were conducted to research the bioleaching behaviors of crude ore of copper sulfide and hand-picked concentrates of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans.The experimental results show that the bacteria grow best when the temperature is(30±1) °C and the pH value is 2.0.The bacteria concentration is 2.24×107 mL-1 in this condition.It is found that the copper extraction yield is affected by the inoculum size and the pulp density and the extraction yield increases as the inoculum size grows.The bioleaching rates reach their highest point in sulfide copper and chalcopyrite with a pulp density of 5% and 10%,respectively.Column flotation experiments of low-grade copper sulfide ores show that the bioleaching recovery reaches nearly 45% after 75 days.
基金Project(207154)supported by the Postdoctoral Research Funding of Central South University,ChinaProjects(31470230,51320105006,51604308)supported by the National Natural Science Foundation of China+2 种基金Project(2017RS3003)supported by the Youth Talent Foundation of Hunan Province,ChinaProject(2018JJ2486)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018WK2012)supported by the Key Research and Development Projects in Hunan Province,China。
文摘The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactors at 70℃.Introducing M.sedula copA mutant,a copper sensitive derivative,only had negligible effects on bioleaching.While introducing M.sedula ARS50-2,a Cu^2+resistant strain,substantially consolidated bioleaching process,with 27.77%more copper recovered after 58 d of bioleaching.Addition of M.sedula ARS50-2 likely enhanced the sulfur oxidation capacity of consortium after the 24th day under the Cu^2+stress.The majority of extreme thermoacidophiles were attached on minerals surface as indicated by quantitative PCR(qPCR)data.Successions of microbial community of extremely thermoacidophilic consortia that attached on surface of minerals were different from those in leachate.M.hakonensis HO1-1 was the dominant species attached on minerals surface in each column reactor throughout bioleaching process.The sessile M.sedula ARS50-2 remained as a major species till the 34th day.A.brierleyi DSM1651 was the most abundant planktonic species in leachate of each column reactor.These results highlight that higher Cu^2+-resistance is a beneficial trait for extreme thermoacidophiles to process copper minerals.
基金supported by the National Key Basic Research and Development Programme of China(No.2004CB619200)the National Science Foundation for Distinguished Young Scholars of China(No.50325415)the National Natural Science Foundation of China(No.50321402).
文摘A model GM (grey model) (1,1) for forecasting the rate of copper extraction during the bioleaching of primary sulphide ore was established on the basis of the mathematical theory and the modeling process of grey system theory. It was used for forecasting the rate of copper extraction from the primary sulfide ore during a laboratory microbial column leaching experiment. The precision of the forecasted results were examined and modified via "posterior variance examination". The results show that the forecasted values coincide with the experimental values. GM (1,1) model has high forecast accuracy; and it is suitable for simulation control and prediction analysis of the original data series of the processes that have grey characteristics, such as mining, metallurgical and mineral processing, etc. The leaching rate of such copper sulphide ore is low. The grey forecasting result indicates that the rate of copper extraction is approximately 20% even after leaching for six months.
基金financially supported by the Key Program of National Natural Science Foundation of China (Nos. 52034001 and 51734001)the Innovation Team in Key Fields of Ministry of Science and Technology of the People’s Republic of China (No. 2018RA400)+2 种基金the 111 Project (No. B20041)the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-003C1)China Scholarship Council (No. 202006460037)
文摘Effects of residues produced by agricultural wastes fermentation(AWF)on low grade copper sulfide ores bioleaching,copper recovery,and microbial community were investigated.The results indicated that adding appropriate bulk of AWF made contributions to low grade copper sulfide ores bioleaching,which may be mainly realized through reducing the passivation layer formed by Fe3+hydrolysis.Improved copper recovery(78.35%)and bacteria concentration(9.56×10^(7)cells·mL^(−1))were yielded in the presence of 5 g·L^(−1)AWF.The result of 16S rDNA analysis demonstrated that microbial community was differentiated by adding AWF.Bacteria proportion,such as Acidithiobacillus ferrooxidans,Moraxella osloensis,and Lactobacillus acetotolerans changed distinctly.Great difference between samples was showed according to beta diversity index,and the maximum value reached 0.375.Acidithiobacillus ferrooxidans accounted for the highest proportion throughout the bioleaching process,and that of sample in the presence of 5 g·L^(−) AWF reached 28.63%.The results should show reference to application of agricultural wastes and low grade copper sulfide ores.
文摘The ore-controlling mechanism of the bedding fault system in the massive sulfide deposits of the Wushancopper orefield may be generalized as the control of ore deposition by optimum surface in an ore-formingstructural trap. The mechanism has three major features: (1) timing of mineralization; (2) positioning of hostformation; and (3) dependence of ore-controlling structure on properties of rocks. The 'optimum surface' is adivisional structural plane which marks obvious difference in physical, chemical and mechanical properties andis favorable for mineralization. It is also a unity of structures. lithofacies and orebodies. The structural and geochemical characteristics of the ore deposits indicate the migration trend of the ma-jor characteristic clements in the ore-controlling fault belt: elements with a small radius (Si, Fe, Mg and Al)moved towards and concentrated at the center of the belt while large-radius ones (Ca, K and Na) were remotefrom the center.
基金Projects(51374248,51320105006) supported by National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692) supported by the China Postdoctoral Science Foundation
文摘For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.
基金Project(2016zzts109)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘This work focuses on the organic depressant,disodium bis(carboxymethyl)trithiocarbonate(DBT),as a selectivedepressant in copper?molybdenum sulfide flotation separation.Micro-flotation,Zeta potential,FTIR and XPS measurements werecarried out to investigate the selective depression mechanism of DBT on chalcopyrite.Zeta potential and FTIR measurementsrevealed that DBT had higher affinity for chalcopyrite than molybdenite and the XPS results of chalcopyrite before and aftertreatment with DBT further proved that DBT adsorbed on chalcopyrite surface.The investigation indicates that the mechanism ofDBT adsorbing on chalcopyrite is mainly physical adsorption.Locked circuit experiments were carried out and the results showedthat DBT could be considered as a cleaner option in commercial Cu?Mo flotation separation circuits.