Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminant...Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminants.Herein, we propose a new S-nZVI/graphene aerogel(S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene(TCE) from water.Three-dimensional porous graphene aerogel(GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs.The TCE removal rates of Fe S, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2 hr, respectively.Furthermore, TCE was completely removed within 50 min by S-nZVI/GA.The TCE removal rate increased with increasing p H and temperature, and TCE removal followed the pseudo-first-order kinetic model.The results demonstrate the great potential of S-nZVI/GA composite as a low-cost,easily separated and superior monolithic adsorbent for removal of organic pollutants.展开更多
Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harmi...Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.展开更多
Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(...Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications.展开更多
Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF d...Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF degradation by the combined process of zero-valent iron nanoparticles(nZVI)and nano calcium peroxide(nCaO_(2))were performed.A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO_(2)nanoparticles and pH value on the DCF removal.In the meantime,the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO_(2)nanoparticles in the reaction system.The results show that the nZVI/nCaO_(2)can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO_(2)added,resulting in a removal rate of greater than 90%in a 2-hour reaction with an initial pH of 5.The degradation rate of DCF was positively correlated with the dosage of nCaO_(2),and negatively correlated with both nZVI dosage and the initial pH value.The order of significance of the three factors is identified as pH value>nZVI dosage>nCaO_(2)dosage.In the continuous-flow reaction system,the DCF removal rates remained above 75%within 150 minutes at the pH of 5,with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO_(2).These results provide a theoretical basis for the nZVI/nCaO_(2)application to remove DCF in groundwater.展开更多
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing...Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications.Herein,this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water.Firstly,Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion.The morphological,structural,and compositional evolution of(modified-)nZVI under different environmental conditions,assisted with microscopic and spectroscopic evidence,is then summarized.Afterwards,common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water.Specifically,stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed,emphasizing their capabilities in studying the dynamic iron corrosion processes.Finally,in the future,more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties.We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment.展开更多
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like deg...To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.展开更多
The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZV...The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZVI was distributed on oak sawdust-derived biochar (BC) to obtain the nZVI/BC composite for the highly efficient reduction of nitrobenzene (NB). nZVI, BC and nZVI/BC were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For nZVI/BC, nZVI particles were uniformly dispersed on BC. nZVI/BC exhibited higher removal efficiency for NB than the simple summation of bare nZVI and BC. The removal mechanism was investigated through the analyses of UV-Visible spectra, mass balance and XPS. NB was quickly adsorbed on the surface of nZVI/BC, and then gradually reduced to aniline (AN), accompanied by the oxidation of nZVI to magnetite. The effects of several reaction parameters, e.g., NB concentration, reaction pH and nZVI/BC aging time, on the removal of NB were also studied. In addition to high reactivity, the loading of nZVI on biochar significantly alleviated Fe leaching and enhanced the durability of nZVI.展开更多
In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by ...In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by one-step liquid-phase reduction and applied for oxytetracycline(OTC) removal. The effects of contact time and initial p H on the removal efficiency were studied. The as-prepared nanoscale particles were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Finally, the degradation mechanisms of OTC utilizing the as-prepared nanoparticles were investigated by using X-ray photoelectron spectroscopy(XPS) and mass spectrometry(MS). Cu/n ZVI presented remarkable ability for OTC degradation and removed71.44% of OTC(100 mg/L) in 4 hr, while only 62.34% and 31.05% of OTC was degraded by Ni/nZVI and nZVI respectively. XPS and MS analysis suggested that OTC was broken down to form small molecules by ·OH radicals generated from the corrosion of Fe0. Cu/nZVI and Ni/n ZVI have been proved to have potential as materials for application in OTC removal because of their significant degradation ability toward OTC.展开更多
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization...In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications.展开更多
The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the ...The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the core-shell interface. The chemical compositions and the fine structure of nZVI are characterized with a combination of spherical aberration corrected scanning transmission electron microscopy(Cs-STEM), X-ray energy-dispersive spectroscopy(XEDS), electron energy loss spectroscopy(EELS), and high-resolution X-ray photoelectron spectroscopy(HR-XPS). Atomically resolved EELS at the oxygen K-edge unfolds that the Fe species in nZVI are well stratified from Fe(Ⅲ) oxides in the outermost periphery to a mixed Fe(Ⅲ)/Fe(Ⅱ) interlayer, then Fe(Ⅱ) oxide and the pure Fe(0) phase. Reactions between As(Ⅴ)and nZVI suggest that a well-structured local redox gradient exists within the shell layer, which serves as a thermodynamically favorable conduit for electron transfer from the iron core to the surface-bound As(Ⅴ). HR-XPS with ion sputtering shows that arsenic species shift from As(Ⅴ), As(Ⅲ)/As(Ⅴ) to As(Ⅴ)/As(Ⅲ)/As(0) from the iron oxide shell–water interface to the Fe(0) core. Results reinforce previous work on the efficacy of nZVI for removing and remediating arsenic while the analytical TEM methods are also applicable to the study of environmental interfaces and surface chemistry.展开更多
Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanosca...Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated. The results showed that the dechlorination of 4-C1BP by NZVI increased with decreased solution pH. When the initial pH value was 4.0, 5.5, 6.8, and 9.0, the de.chlorination efficiencies of 4-CIBP after 48 hr were 53.8%, 47.8%, 35.7%, and 35.6%, respectively. The presence of humic acid inhibited the reduction of 4-CIBP in the first 4 hi', and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr. Divalent metal ions, Co2+, Cu2+, and Ni2+, were reduced and formed bimetals with NZVI, thereby enhanced the dechlorination of 4-CIBP. The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2~, Cuz~ and Niz~ were 66.1%, 66.0% and 64.6% in 48 hr, and then increased to 67.9%, 71.3% and 73.5%, after 96 hr respectively. The dechlorination kinetics of 4-C1BP by the NZVI in all cases followed pseudo-first order model. The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.展开更多
Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxid...Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxidation. Herein, we report the nZVI incorporated into mesoporous carbon(MC) to enhance stability in aqueous solution and mobility in porous media. Meanwhile, the reactivity of nZVI is preserved thanks to high temperature treatment and confinement of carbon framework. Small-sized(~16 nm) nZVI nanoparticles are uniformly dispersed in the whole carbon frameworks. Importantly, the nanoparticles are partially trapped across the carbon walls with a portion exposed to the mesopore channels. This unique structure not only is conductive to hold the nZVI tightly to avoid aggregation during mobility but also provides accessible active sites for reactivity. This new type of nanomaterial contains ~10 wt% of iron. The nZVI@MC possesses a high surface area(~ 500 m^2/g) and uniform mesopores(~ 4.2 nm) for efficient pollutant diffusion and reactions. Also, high porosity of nZVI@MC contributes to the stability and mobility of nZVI. Laboratory column experiments further demonstrate that nZVI@MC suspension(~4 g Fe/L) can pass through sand columns much more efficiently than bare nZVI while the high reactivity of nZVI@MC is confirmed from reactions with Ni(II). It exhibits remarkably better performance in nickel(20 mg/L) extraction than mesoporous carbon, with 88.0% and 33.0%uptake in 5 min, respectively.展开更多
Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). N...Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(〈1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(〉1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 〈 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 〉 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation.展开更多
Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform i...Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.展开更多
Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully est...Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully established by modifying nanoscale zero-valent iron(nZVI)with SC and biochar(BC),and was employed to remove Cr(Ⅵ)from aqueous solu-tions.The nZVI,SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analy-ses(TGA),vibrating sample magnetometer(VSM),scanning electron microscope(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results showed that nZVI was successfully loaded on the biochar,and both the agglomeration and surface pas-sivation problems of nanoparticles were well resolved.The dosage of SC,C∶Fe,initial pH and Cr(Ⅵ)concentration demonstrated direct effects on the removal efficiency.The maximum Cr(Ⅵ)removal rate and the removal capacity within 60 min were 99.7%and 199.46 mg/g,respectively(C∶Fe was 1∶1,SC dosage was 1.12 mol.%,temperature was 25℃,pH=7,and the original concentration of Cr(Ⅵ)was 20 mg/L).The reaction confirmed to follow the pseudo-second-order reaction kinetics,and the order of the reaction rate constant k was as follows:SC-nZVI@BC>nZVI@BC>SC-nZVI>nZVI.In addition,the mechanism of Cr(Ⅵ)removal by SC-nZVI@BC mainly involved adsorption,reduction and co-precipitation,and the reduction of Cr(Ⅵ)to Cr(Ⅲ)by nano Fe0 played a vital role.Findings from the present study demon-strated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ)with an improved synergistic characteristic by SC and BC.展开更多
An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion...An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmoriUonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased.展开更多
Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial conce...Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg. L-1 phosphorus when the dosage of R-nZVl is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg. L-1. Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N2 method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.展开更多
Chlorophenols(CPs),as important contami-nants in groundwater,are toxic and difficult to biode-grade.Recentlynanoscalezero-valentironreceivedagreat deal of attention because of its excellent performance in treating rec...Chlorophenols(CPs),as important contami-nants in groundwater,are toxic and difficult to biode-grade.Recentlynanoscalezero-valentironreceivedagreat deal of attention because of its excellent performance in treating recalcitrant compounds.In this study,nanoscale zero-valent iron particles were prepared using chemical reduction,and the reductive transformations of three kinds of chlorinated phenols(2-CP,3-CP,and 4-CP)by nanoscale zero-valent iron under different conditions were investigated.The transformation process of the CPs was shown to be dechlorination first,then cleavage of the benzene ring.The removal efficiency of the CPs varied as follows:2-CP.3-CP.4-CP.The reactivity of CPs was associated with their energy of lowest unoccupied molecular orbit(E LUMO).With the increase in initial concentrations of CPs,removal efficiency decreased a little.But the quantities of CPs reduced increased evidently.Temperature had influence on not only the removal efficiency,but also the transformation pathway.At higher temperatures,dechlorination occurred prior to benzene ring cleavage.At lower temperatures,however,the oxidation product was formed more easily.展开更多
Nanoscale zero-valent iron(nZVI)supported on D001 resin(D001-nZVI)was synthesized for adsorption of high solubility and mobility radionuclide^99Tc.Re(VII),a chemical substitute for^99Tc,was utilized in batch experimen...Nanoscale zero-valent iron(nZVI)supported on D001 resin(D001-nZVI)was synthesized for adsorption of high solubility and mobility radionuclide^99Tc.Re(VII),a chemical substitute for^99Tc,was utilized in batch experiments to investigate the feasibility and adsorption mechanism toward Tc(VII).Factors(pH,resin dose)affecting Re(VII)adsorption were studied.The high adsorption efficiency of Re(VII)at pH=3 and the solid-liquid ratio of 20 g/L.X-ray diffraction patterns revealed the reduction of ReO^?4 into ReO2 immobilized in D001-nZVI.Based on the optimum conditions of Re(VII)adsorption,the removal experiments of Tc(VII)were conducted where the adsorption efficiency of Tc(VII)can reach 94%.Column experiments showed that the Thomas model gave a good fit to the adsorption process of Re(VII)and the maximum dynamic adsorption capacity was 0.2910 mg/g.展开更多
The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-fri...The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-friendly methods for reducing estrogens pollution.To address the agglomeration and oxidation of nano zero-valent iron(nZVI),biochar-nanoscale zero-valent iron composite(nZVI-biochar)could be a feasible choice for estrogens removal.This study summarized biochar and nZVI-biochar preparation,characterization,and unusual applications for estrone(E1),17β-estradiol(E2),and estriol(E3)removal.The properties of biochar and nZVI-biochar in characterization,effects of influencing factors on the removal efficiency,adsorption kinetics,isotherm and thermodynamics were investigated.The experiment results showed that nZVI-biochar exhibited the superior removal performance for estrogens pollutants compared to biochar.Based on the quasi-second-order model,estrogens adsorption kinetics were observed,which supported the mechanism that chemical and physical adsorption existed simultaneously on estrogens removal.The adsorption isotherm of estrogens could be well presented by the Freundlich model and thermodynamics studies explained that nZVI-biochar could spontaneously remove estrogens pollutants and the main mechanisms involvedπ-πinteraction,hydrophobic interaction,hydrogen bonding and degradation through ring rupture.The products analyzed by GC-MS showed that estrogens degradation was primarily attributed to the benzene ring broken,and Fe^(3+)promoted the production of free radicals,which further proved that nZVI-biochar had the excellent adsorption performances.Generally,nZVI-biochar could be employed as a potential material for removing estrogens from wastewater.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51408101)the Key Research and Development (R&D) Program from the Department of Science and Technology of Sichuan Province (No.2018FZ0011).
文摘Sulfide-modified nanoscale zero-valent iron(S-nZVI) is a promising material for removal of organic pollutants from water, but S-nZVI nanoparticles(NPs) easily agglomerate and have poor contact with organic contaminants.Herein, we propose a new S-nZVI/graphene aerogel(S-nZVI/GA) composite which exhibits superior removal capability for trichloroethylene(TCE) from water.Three-dimensional porous graphene aerogel(GA) can improve the efficiency of electron transport, enhance the adsorption of organic pollutants and restrain the agglomeration of the core-shell S-nZVI NPs.The TCE removal rates of Fe S, nZVI, GA and S-nZVI were 27.8%, 42%, 63% and 75% in 2 hr, respectively.Furthermore, TCE was completely removed within 50 min by S-nZVI/GA.The TCE removal rate increased with increasing p H and temperature, and TCE removal followed the pseudo-first-order kinetic model.The results demonstrate the great potential of S-nZVI/GA composite as a low-cost,easily separated and superior monolithic adsorbent for removal of organic pollutants.
基金supported by the National Natural Science Foundation of China(21876131)the National Key Research and Development Program of China(2022YFC3702101)the Foundation of State Key Laboratory of Pollution Control and Resource Reuse of China(PCRRY).
文摘Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.
基金This study was supported by the State Key Laboratory of Petroleum and Petrochemical Contaminant Control and Treatment,the Open Project(Authorization:PPC2019021)the Research and Promotion Project of Key Technologies for Safety and Environmental Protection of CNPC(2017D-4013)the PetroChina Technology Innovation Fund Research Project(Authorization:2017D-5007-0601,2018D-5007-0605).
文摘Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications.
基金the National Natural Science Foundation of China(42077176,41601514)Shanghai“Science and Technology Innovation Action Plan”Project(19230742400,19ZR1459300)+1 种基金Shanghai Peak Discipline Project(0200121005/053,2019010202)State Key Laboratory of Petroleum Pollution Control(PPC2016019)。
文摘Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF degradation by the combined process of zero-valent iron nanoparticles(nZVI)and nano calcium peroxide(nCaO_(2))were performed.A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO_(2)nanoparticles and pH value on the DCF removal.In the meantime,the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO_(2)nanoparticles in the reaction system.The results show that the nZVI/nCaO_(2)can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO_(2)added,resulting in a removal rate of greater than 90%in a 2-hour reaction with an initial pH of 5.The degradation rate of DCF was positively correlated with the dosage of nCaO_(2),and negatively correlated with both nZVI dosage and the initial pH value.The order of significance of the three factors is identified as pH value>nZVI dosage>nCaO_(2)dosage.In the continuous-flow reaction system,the DCF removal rates remained above 75%within 150 minutes at the pH of 5,with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO_(2).These results provide a theoretical basis for the nZVI/nCaO_(2)application to remove DCF in groundwater.
基金supported by the National Natural Science Foundation of China (No.52200184)the Fundamental Research Funds for Central Universities (No.12060096014)。
文摘Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications.Herein,this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water.Firstly,Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion.The morphological,structural,and compositional evolution of(modified-)nZVI under different environmental conditions,assisted with microscopic and spectroscopic evidence,is then summarized.Afterwards,common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water.Specifically,stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed,emphasizing their capabilities in studying the dynamic iron corrosion processes.Finally,in the future,more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties.We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment.
基金supported by the National Natural Science Foundation of China (No.22176067)。
文摘To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.
基金financially supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX17 0120)the National Natural Science Foundation of China (Grant Nos. 41471267 and 41601527)+1 种基金Natural Science Foundation of Guangdong Province, China (Nos. 2014A030313704 and 2014A030310141)Technology Program of Guangzhou, China (Grant No. 201607010236).
文摘The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZVI was distributed on oak sawdust-derived biochar (BC) to obtain the nZVI/BC composite for the highly efficient reduction of nitrobenzene (NB). nZVI, BC and nZVI/BC were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For nZVI/BC, nZVI particles were uniformly dispersed on BC. nZVI/BC exhibited higher removal efficiency for NB than the simple summation of bare nZVI and BC. The removal mechanism was investigated through the analyses of UV-Visible spectra, mass balance and XPS. NB was quickly adsorbed on the surface of nZVI/BC, and then gradually reduced to aniline (AN), accompanied by the oxidation of nZVI to magnetite. The effects of several reaction parameters, e.g., NB concentration, reaction pH and nZVI/BC aging time, on the removal of NB were also studied. In addition to high reactivity, the loading of nZVI on biochar significantly alleviated Fe leaching and enhanced the durability of nZVI.
基金supported by grants from Tai Shan Scholar Foundation(No.ts 201511003)
文摘In this study, bimetallic nanoscale zero-valent iron particles(nZVI), including copper/nanoscale zero-valent iron particles(Cu/nZVI) and nickel/nanoscale zero-valent iron particles(Ni/nZVI), were synthesized by one-step liquid-phase reduction and applied for oxytetracycline(OTC) removal. The effects of contact time and initial p H on the removal efficiency were studied. The as-prepared nanoscale particles were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Finally, the degradation mechanisms of OTC utilizing the as-prepared nanoparticles were investigated by using X-ray photoelectron spectroscopy(XPS) and mass spectrometry(MS). Cu/n ZVI presented remarkable ability for OTC degradation and removed71.44% of OTC(100 mg/L) in 4 hr, while only 62.34% and 31.05% of OTC was degraded by Ni/nZVI and nZVI respectively. XPS and MS analysis suggested that OTC was broken down to form small molecules by ·OH radicals generated from the corrosion of Fe0. Cu/nZVI and Ni/n ZVI have been proved to have potential as materials for application in OTC removal because of their significant degradation ability toward OTC.
基金support provided by the National Key Technology R&D Program(no.2012BAJ21B04)the financial support from the China Scholarship Council(CSC)for one year as a visiting scholar at Stevens Institute of Technology
文摘In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications.
基金the National Natural Science Foundation of China(11475127,51578396,41673096,and 41772243)National Postdoctoral Program for Innovative Talents(BX201700172)
文摘The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the core-shell interface. The chemical compositions and the fine structure of nZVI are characterized with a combination of spherical aberration corrected scanning transmission electron microscopy(Cs-STEM), X-ray energy-dispersive spectroscopy(XEDS), electron energy loss spectroscopy(EELS), and high-resolution X-ray photoelectron spectroscopy(HR-XPS). Atomically resolved EELS at the oxygen K-edge unfolds that the Fe species in nZVI are well stratified from Fe(Ⅲ) oxides in the outermost periphery to a mixed Fe(Ⅲ)/Fe(Ⅱ) interlayer, then Fe(Ⅱ) oxide and the pure Fe(0) phase. Reactions between As(Ⅴ)and nZVI suggest that a well-structured local redox gradient exists within the shell layer, which serves as a thermodynamically favorable conduit for electron transfer from the iron core to the surface-bound As(Ⅴ). HR-XPS with ion sputtering shows that arsenic species shift from As(Ⅴ), As(Ⅲ)/As(Ⅴ) to As(Ⅴ)/As(Ⅲ)/As(0) from the iron oxide shell–water interface to the Fe(0) core. Results reinforce previous work on the efficacy of nZVI for removing and remediating arsenic while the analytical TEM methods are also applicable to the study of environmental interfaces and surface chemistry.
基金supported by the National Basic Research and Development Program (973) of China (No. 2007CB936604)
文摘Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation. The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated. The results showed that the dechlorination of 4-C1BP by NZVI increased with decreased solution pH. When the initial pH value was 4.0, 5.5, 6.8, and 9.0, the de.chlorination efficiencies of 4-CIBP after 48 hr were 53.8%, 47.8%, 35.7%, and 35.6%, respectively. The presence of humic acid inhibited the reduction of 4-CIBP in the first 4 hi', and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr. Divalent metal ions, Co2+, Cu2+, and Ni2+, were reduced and formed bimetals with NZVI, thereby enhanced the dechlorination of 4-CIBP. The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2~, Cuz~ and Niz~ were 66.1%, 66.0% and 64.6% in 48 hr, and then increased to 67.9%, 71.3% and 73.5%, after 96 hr respectively. The dechlorination kinetics of 4-C1BP by the NZVI in all cases followed pseudo-first order model. The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.
基金supported by the National Natural Science Foundation of China(Nos.51578398,and 21707104)the National Postdoctoral Program for Innovative Talents(No.BX201700172)the Fundamental Research Funds for the Central Universities(No.0400219376)
文摘Two challenges persist in the applications of nanoscale zero-valent iron(nZVI) for environmental remediation and waste treatment: limited mobility due to rapid aggregation and short lifespan in water due to quick oxidation. Herein, we report the nZVI incorporated into mesoporous carbon(MC) to enhance stability in aqueous solution and mobility in porous media. Meanwhile, the reactivity of nZVI is preserved thanks to high temperature treatment and confinement of carbon framework. Small-sized(~16 nm) nZVI nanoparticles are uniformly dispersed in the whole carbon frameworks. Importantly, the nanoparticles are partially trapped across the carbon walls with a portion exposed to the mesopore channels. This unique structure not only is conductive to hold the nZVI tightly to avoid aggregation during mobility but also provides accessible active sites for reactivity. This new type of nanomaterial contains ~10 wt% of iron. The nZVI@MC possesses a high surface area(~ 500 m^2/g) and uniform mesopores(~ 4.2 nm) for efficient pollutant diffusion and reactions. Also, high porosity of nZVI@MC contributes to the stability and mobility of nZVI. Laboratory column experiments further demonstrate that nZVI@MC suspension(~4 g Fe/L) can pass through sand columns much more efficiently than bare nZVI while the high reactivity of nZVI@MC is confirmed from reactions with Ni(II). It exhibits remarkably better performance in nickel(20 mg/L) extraction than mesoporous carbon, with 88.0% and 33.0%uptake in 5 min, respectively.
基金supported by the National Natural Science Foundation of China(Nos.21677107,51578398)the Fundamental Research Funds for the Central Universities(No.0400219363)
文摘Solid phase reactions of Cr(Ⅵ) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy(Cs-STEM) integrated with X-ray energy-dispersive spectroscopy(XEDS). Near-atomic resolution elemental mappings of Cr(Ⅵ)–Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(Ⅵ) encapsulation are strongly dependent on the initial concentration of Cr(Ⅵ) in solution. Low Cr loading in nZⅥ(〈1.0 wt%) promotes the electrochemical oxidation and continuous corrosion of n ZⅥ while high Cr loading(〉1.0 wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(Ⅵ)(e.g., 〈 10 mg/L). Whereas the reacted n ZⅥ is quickly coated with a newly-formed layer of 2–4 nm in the presence of concentrated Cr(Ⅵ)(e.g., 〉 100 mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy(XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxides with Cr(Ⅵ) adsorbed on the outside surface. The insoluble and insulating Fe(Ⅲ)–Cr(Ⅲ)(oxy)hydroxide layer can completely cover the n ZⅥ surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZⅥ in high Cr(Ⅵ) solution is detrimental to the performance of nZⅥ for Cr(Ⅵ) treatment and remediation.
基金supported by the Research and Development Program of Guangdong Province (No. 2020B0202080001)by the China Postdoctoral Science Foundation (No. 2019M651583)+1 种基金by the Education Commission of Shanghai (No. 0400106005)by the National Science Foundation of China (Nos. 21277102, 21003151)。
文摘Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.
基金This work was supported by the National Natural Science Foundation of China(No.21976153).
文摘Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully established by modifying nanoscale zero-valent iron(nZVI)with SC and biochar(BC),and was employed to remove Cr(Ⅵ)from aqueous solu-tions.The nZVI,SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analy-ses(TGA),vibrating sample magnetometer(VSM),scanning electron microscope(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results showed that nZVI was successfully loaded on the biochar,and both the agglomeration and surface pas-sivation problems of nanoparticles were well resolved.The dosage of SC,C∶Fe,initial pH and Cr(Ⅵ)concentration demonstrated direct effects on the removal efficiency.The maximum Cr(Ⅵ)removal rate and the removal capacity within 60 min were 99.7%and 199.46 mg/g,respectively(C∶Fe was 1∶1,SC dosage was 1.12 mol.%,temperature was 25℃,pH=7,and the original concentration of Cr(Ⅵ)was 20 mg/L).The reaction confirmed to follow the pseudo-second-order reaction kinetics,and the order of the reaction rate constant k was as follows:SC-nZVI@BC>nZVI@BC>SC-nZVI>nZVI.In addition,the mechanism of Cr(Ⅵ)removal by SC-nZVI@BC mainly involved adsorption,reduction and co-precipitation,and the reduction of Cr(Ⅵ)to Cr(Ⅲ)by nano Fe0 played a vital role.Findings from the present study demon-strated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ)with an improved synergistic characteristic by SC and BC.
基金supported by the National Science and Technology Major Projects of Water Pollution Control andManagement of China (No. 2012ZX07206002)
文摘An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmoriUonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased.
文摘Self-made cation exchange resin supported nanoscale zero-valent iron (R-nZVI) was used to remove phosphorus in rainwater runoff. 80% of phosphorus in rainwater runoff from grassland was removed with an initial concentration of 0.72 mg. L-1 phosphorus when the dosage of R-nZVl is 8 g per liter rainwater, while only 26% of phosphorus was removed when using cation exchange resin without supported nanoscale zero-valent iron under the same condition. The adsorption capacity of R-nZVI increased up to 185 times of that of the cation exchange resin at a saturated equilibrium phosphorous concentration of 0.42 mg. L-1. Various techniques were implemented to characterize the R-nZVI and explore the mechanism of its removal of phosphate. Scanning electron microscopy (SEM) indicated that new crystal had been formed on the surface of R-nZVI. The result from inductive coupled plasma (ICP) indicated that 2.1% of nZVI was loaded on the support material. The specific surface area was increased after the load of nanoscale zero-valent iron (nZVI), according to the measurement of BET-N2 method. The result of specific surface area analysis also proved that phosphorus was removed mainly through chemical adsorption process. X-ray photoelectron spectroscopy (XPS) analysis showed that the new product obtained from chemical reaction between phosphate and iron was ferrous phosphate.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50678089 and 50325824),which is greatly acknowledged.
文摘Chlorophenols(CPs),as important contami-nants in groundwater,are toxic and difficult to biode-grade.Recentlynanoscalezero-valentironreceivedagreat deal of attention because of its excellent performance in treating recalcitrant compounds.In this study,nanoscale zero-valent iron particles were prepared using chemical reduction,and the reductive transformations of three kinds of chlorinated phenols(2-CP,3-CP,and 4-CP)by nanoscale zero-valent iron under different conditions were investigated.The transformation process of the CPs was shown to be dechlorination first,then cleavage of the benzene ring.The removal efficiency of the CPs varied as follows:2-CP.3-CP.4-CP.The reactivity of CPs was associated with their energy of lowest unoccupied molecular orbit(E LUMO).With the increase in initial concentrations of CPs,removal efficiency decreased a little.But the quantities of CPs reduced increased evidently.Temperature had influence on not only the removal efficiency,but also the transformation pathway.At higher temperatures,dechlorination occurred prior to benzene ring cleavage.At lower temperatures,however,the oxidation product was formed more easily.
基金supported by the National Natural Science Foundation of China(Grant Nos.11675103 and 91226111).
文摘Nanoscale zero-valent iron(nZVI)supported on D001 resin(D001-nZVI)was synthesized for adsorption of high solubility and mobility radionuclide^99Tc.Re(VII),a chemical substitute for^99Tc,was utilized in batch experiments to investigate the feasibility and adsorption mechanism toward Tc(VII).Factors(pH,resin dose)affecting Re(VII)adsorption were studied.The high adsorption efficiency of Re(VII)at pH=3 and the solid-liquid ratio of 20 g/L.X-ray diffraction patterns revealed the reduction of ReO^?4 into ReO2 immobilized in D001-nZVI.Based on the optimum conditions of Re(VII)adsorption,the removal experiments of Tc(VII)were conducted where the adsorption efficiency of Tc(VII)can reach 94%.Column experiments showed that the Thomas model gave a good fit to the adsorption process of Re(VII)and the maximum dynamic adsorption capacity was 0.2910 mg/g.
基金Study on Colloidal Coagulation and Heavy Metal Adsorption Mechanism of Sediment River(No.42007158)Study on the distribution characteristics of birds and the reduction technology of typical pollutants in their habitats in the Yellow River basin(Henan section)(No.23B180008)supported this research.
文摘The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-friendly methods for reducing estrogens pollution.To address the agglomeration and oxidation of nano zero-valent iron(nZVI),biochar-nanoscale zero-valent iron composite(nZVI-biochar)could be a feasible choice for estrogens removal.This study summarized biochar and nZVI-biochar preparation,characterization,and unusual applications for estrone(E1),17β-estradiol(E2),and estriol(E3)removal.The properties of biochar and nZVI-biochar in characterization,effects of influencing factors on the removal efficiency,adsorption kinetics,isotherm and thermodynamics were investigated.The experiment results showed that nZVI-biochar exhibited the superior removal performance for estrogens pollutants compared to biochar.Based on the quasi-second-order model,estrogens adsorption kinetics were observed,which supported the mechanism that chemical and physical adsorption existed simultaneously on estrogens removal.The adsorption isotherm of estrogens could be well presented by the Freundlich model and thermodynamics studies explained that nZVI-biochar could spontaneously remove estrogens pollutants and the main mechanisms involvedπ-πinteraction,hydrophobic interaction,hydrogen bonding and degradation through ring rupture.The products analyzed by GC-MS showed that estrogens degradation was primarily attributed to the benzene ring broken,and Fe^(3+)promoted the production of free radicals,which further proved that nZVI-biochar had the excellent adsorption performances.Generally,nZVI-biochar could be employed as a potential material for removing estrogens from wastewater.