Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimiz...Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions lead-ing to a significant reduction of the electronic repulsions in the orbitals of catalysts.Herein,we anchor the MgPc molecules on fluorinated carbon nanotubes(MgPc@FCNT),which exhibits the single active Mg sites with axial displacement.According to the density functional theory calculations,the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batter-ies.As a result,the MgPc@FCNT provides an initial capacity of 6.1 mAh cm^(-2) even when the high sulfur loading is 4.5 mg cm^(-2),and still maintains 5.1 mAh cm^(-2) after 100 cycles.This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.22109140,U22A20107)Henan Provincial Science and Technology R&D Program Joint Fund(222301420001)+4 种基金Distinguished Young Scholars Innovation Team of Zhengzhou University(No.32320275)Higher Education Teaching Reform Research and Practice Project of Henan Province(2021SJGLX093Y)China Postdoctoral Science Foundation(2022M722866)International Talent Cooperation Program in Henan Province(No.HNGD2022036)the Postdoctoral Science Foundation of Zhengzhou University(22120030).
文摘Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions lead-ing to a significant reduction of the electronic repulsions in the orbitals of catalysts.Herein,we anchor the MgPc molecules on fluorinated carbon nanotubes(MgPc@FCNT),which exhibits the single active Mg sites with axial displacement.According to the density functional theory calculations,the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batter-ies.As a result,the MgPc@FCNT provides an initial capacity of 6.1 mAh cm^(-2) even when the high sulfur loading is 4.5 mg cm^(-2),and still maintains 5.1 mAh cm^(-2) after 100 cycles.This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.