Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selen...Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli.展开更多
Sulforaphane, a naturally specialized metabolite, plays significant roles in human disease prevention and plant defense. Myrosinase(MY) is a key gene responsible for the catalysis of sulforaphane formation, but the mo...Sulforaphane, a naturally specialized metabolite, plays significant roles in human disease prevention and plant defense. Myrosinase(MY) is a key gene responsible for the catalysis of sulforaphane formation, but the molecular mechanisms through which MY regulates sulforaphane biosynthesis in plants remains largely unknown. Here, we discovered that the change of sulforaphane content in broccoli sprouts caused by exogenous selenite treatments is positively related to BoMY expression. BoMY overexpression in the Arabidopsis thaliana tgg1 mutants could dramatically increase myrosinase activity and sulforaphane content in the rosette leaves of 35S::BoMY/tgg1 and rescue its phenotypes.Moreover, an obvious increase of myrosinase activity and sulforaphane content was displayed in transgenic BoMY-overexpressed broccoli lines.In addition, a 2 033 bp promoter fragment of BoMY was isolated. Yeast one-hybrid(Y1H) library screening experiment uncovered that one bHLH transcription factor, BoFAMA, could directly bind to BoMY promoter to activate its expression, which was further evidenced by Y1H assay and dual-luciferase reporter assay. BoFAMA is a selenite-responsive transcription factor that is highly expressed in broccoli leaves;its protein is solely localized to nucleus. Additionally, genetic evidence suggested that the knockdown of FAMA gene in Arabidopsis thaliana could significantly decrease sulforaphane yield by inhibiting the expression of myrosinase genes. Interestingly, exogenous selenite supply could partially restore the low level of sulforaphane content in transgenic Arabidopsis FAMA-silencing plants. Our findings uncover a novel function of FAMAMY module in the regulation of selenite-mediated sulforaphane synthesis and provide a new insights into the molecular mechanism by which selenite regulates the accumulation of sulforaphane in plants.展开更多
Background Mastitis not only deteriorates the composition or quality of milk,but also damages the health and pro-ductivity of dairy goats.Sulforaphane(SFN)is a phytochemical isothiocyanate compound with various pharma...Background Mastitis not only deteriorates the composition or quality of milk,but also damages the health and pro-ductivity of dairy goats.Sulforaphane(SFN)is a phytochemical isothiocyanate compound with various pharmacologi-cal effects such as anti-oxidant and anti-inflammatory.However,the effect of SFN on mastitis has yet to be elucidated.This study aimed to explore the anti-oxidant and anti-inflammatory effects and potential molecular mechanisms of SFN in lipopolysaccharide(LPS)-induced primary goat mammary epithelial cells(GMECs)and a mouse model of mastitis.Results In vitro,SFN downregulated the mRNA expression of inflammatory factors(tumor necrosis factor-α(TNF-α),interleukin(IL)-1βand IL-6),inhibited the protein expression of inflammatory mediators(cyclooxygenase-2(COX2),and inducible nitric oxide synthase(iNOS))while suppressing nuclear factor kappa-B(NF-κB)activation in LPS-induced GMECs.Additionally,SFN exhibited an antioxidant effect by increasing Nrf2 expression and nuclear translocation,up-regulating antioxidant enzymes expression,and decreasing LPS-induced reactive oxygen species(ROS)produc-tion in GMECs.Furthermore,SFN pretreatment promoted the autophagy pathway,which was dependent on the increased Nrf2 level,and contributed significantly to the improved LPS-induced oxidative stress and inflammatory response.In vivo,SFN effectively alleviated histopathological lesions,suppressed the expression of inflammatory factors,enhanced immunohistochemistry staining of Nrf2,and amplified of LC3 puncta LPS-induced mastitis in mice.Mechanically,the in vitro and in vivo study showed that the anti-inflammatory and anti-oxidative stress effects of SFN were mediated by the Nrf2-mediated autophagy pathway in GMECs and a mouse model of mastitis.Conclusions These results indicate that the natural compound SFN has a preventive effect on LPS-induced inflam-mation through by regulating the Nrf2-mediated autophagy pathway in primary goat mammary epithelial cells and a mouse model of mastitis,which may improve prevention strategies for mastitis in dairy goats.展开更多
基金the Projects of International Cooperation National Key R&D Program of China(Grant No.2022YFE0108300)the National Key Research and Development Program of China(Grant No.2022YFF1003000)the National Natural Science Foundation of China(Grant Nos.32372682,32272747,32072585,32072568).
文摘Selenocysteine methyltransferase(SMT)is a key enzyme involved in the Se metabolism pathway,and it is responsible for the catalysis of Se-methylselenocysteine(SeMSC)compound formation.Previous studies showed that selenium treatment activated SMT expression and promoted the accumulation of glucosinolates(GSLs)and sulforaphane,but the roles and functional mechanisms of SMT in mediating GSLs and sulforaphane synthesis remain unclear.In this study,we identified the BoSMT gene in broccoli and uncovered its roles in mediating GSLs biosynthesis.Transgenic assays revealed that BoSMT is involved in SeMSC biosynthesis in broccoli.More importantly,the contents of GSLs and sulforaphane were significantly increased in the BoSMT-overexpressing broccoli lines but decreased in the knockdown lines,suggesting that BoSMT played a positive role in regulating GSLs and sulforaphane synthesis.Further evidence indicated that BoSMT-mediated overaccumulation of GSLs and sulforaphane might be due to the increase in the endogenous SeMSC content.Compared with the mock(water)treatment,selenite-induced significantly increases of the SeMSC content in the BoSMT-knockdown plants partially compensated the phenotype of GSLs and sulforaphane loss.Compared with the mock treatment,exogenous SeMSC treatment significantly increased the contents of GSL and sulforaphane and activated GSL synthesis-related gene expression,suggesting that SeMSC acted as a positive regulator for GSL and sulforaphane production.Our findings provided novel insights into selenium-mediated GSLs and sulforaphane accumulation.The genetic manipulation of BoSMT might be a useful strategy for improving the dietary nutritional values of broccoli.
基金funded by the National Key Research and Development Program of China (Grant Nos.2022YFF1003000,2022YFE0108300)the Natural Science Foundation of China (Grant Nos.32272747,32072585,32072568)+1 种基金the Natural Science Foundation of Hunan Province (Grant Nos.2021JJ30324,2021JJ30345)the Outstanding Youth Project of Educational Department of Hunan Province (Grant No.20B275)。
文摘Sulforaphane, a naturally specialized metabolite, plays significant roles in human disease prevention and plant defense. Myrosinase(MY) is a key gene responsible for the catalysis of sulforaphane formation, but the molecular mechanisms through which MY regulates sulforaphane biosynthesis in plants remains largely unknown. Here, we discovered that the change of sulforaphane content in broccoli sprouts caused by exogenous selenite treatments is positively related to BoMY expression. BoMY overexpression in the Arabidopsis thaliana tgg1 mutants could dramatically increase myrosinase activity and sulforaphane content in the rosette leaves of 35S::BoMY/tgg1 and rescue its phenotypes.Moreover, an obvious increase of myrosinase activity and sulforaphane content was displayed in transgenic BoMY-overexpressed broccoli lines.In addition, a 2 033 bp promoter fragment of BoMY was isolated. Yeast one-hybrid(Y1H) library screening experiment uncovered that one bHLH transcription factor, BoFAMA, could directly bind to BoMY promoter to activate its expression, which was further evidenced by Y1H assay and dual-luciferase reporter assay. BoFAMA is a selenite-responsive transcription factor that is highly expressed in broccoli leaves;its protein is solely localized to nucleus. Additionally, genetic evidence suggested that the knockdown of FAMA gene in Arabidopsis thaliana could significantly decrease sulforaphane yield by inhibiting the expression of myrosinase genes. Interestingly, exogenous selenite supply could partially restore the low level of sulforaphane content in transgenic Arabidopsis FAMA-silencing plants. Our findings uncover a novel function of FAMAMY module in the regulation of selenite-mediated sulforaphane synthesis and provide a new insights into the molecular mechanism by which selenite regulates the accumulation of sulforaphane in plants.
基金supported by Fuping County Dairy Goat High-efficiency Breeding Technology R&D and Extension Application Project(No.K3380216101)the Dairy Goat High-efficiency Breeding Technology Research and Application Project(No.K4040121023).
文摘Background Mastitis not only deteriorates the composition or quality of milk,but also damages the health and pro-ductivity of dairy goats.Sulforaphane(SFN)is a phytochemical isothiocyanate compound with various pharmacologi-cal effects such as anti-oxidant and anti-inflammatory.However,the effect of SFN on mastitis has yet to be elucidated.This study aimed to explore the anti-oxidant and anti-inflammatory effects and potential molecular mechanisms of SFN in lipopolysaccharide(LPS)-induced primary goat mammary epithelial cells(GMECs)and a mouse model of mastitis.Results In vitro,SFN downregulated the mRNA expression of inflammatory factors(tumor necrosis factor-α(TNF-α),interleukin(IL)-1βand IL-6),inhibited the protein expression of inflammatory mediators(cyclooxygenase-2(COX2),and inducible nitric oxide synthase(iNOS))while suppressing nuclear factor kappa-B(NF-κB)activation in LPS-induced GMECs.Additionally,SFN exhibited an antioxidant effect by increasing Nrf2 expression and nuclear translocation,up-regulating antioxidant enzymes expression,and decreasing LPS-induced reactive oxygen species(ROS)produc-tion in GMECs.Furthermore,SFN pretreatment promoted the autophagy pathway,which was dependent on the increased Nrf2 level,and contributed significantly to the improved LPS-induced oxidative stress and inflammatory response.In vivo,SFN effectively alleviated histopathological lesions,suppressed the expression of inflammatory factors,enhanced immunohistochemistry staining of Nrf2,and amplified of LC3 puncta LPS-induced mastitis in mice.Mechanically,the in vitro and in vivo study showed that the anti-inflammatory and anti-oxidative stress effects of SFN were mediated by the Nrf2-mediated autophagy pathway in GMECs and a mouse model of mastitis.Conclusions These results indicate that the natural compound SFN has a preventive effect on LPS-induced inflam-mation through by regulating the Nrf2-mediated autophagy pathway in primary goat mammary epithelial cells and a mouse model of mastitis,which may improve prevention strategies for mastitis in dairy goats.