期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Isotopic Compositions of Sulfur in the Jinshachang Lead–Zinc Deposit, Yunnan, China, and its Implication on the Formation of Sulfur-Bearing Minerals 被引量:9
1
作者 BAI Junhao HUANG Zhilong +2 位作者 ZHU Dan YAN Zaifei ZHOU Jiaxi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1355-1369,共15页
The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China... The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium. 展开更多
关键词 sulfur isotopic composition thermochemical sulfate reduction homogenization temperature equilibrium temperature Jinshachang lead-zinc deposit
下载PDF
Sulfur isotopic composition of seafloor hydrothermal sediment from the Jade hydrothermal field in the central Okinawa Trough and its geological significance 被引量:5
2
作者 曾志刚 李军 +3 位作者 蒋富清 翟世奎 秦蕴珊 侯增谦 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2002年第3期395-405,共11页
Eighteen samples of hydrothermal sediments from the Jade hydrothermal field in the central Okinawa Trough have been analyzed. Sulfur isotopic values for 10 sulfide samples vary from 5.2× 10^(-3)to 7.2× 10^(-... Eighteen samples of hydrothermal sediments from the Jade hydrothermal field in the central Okinawa Trough have been analyzed. Sulfur isotopic values for 10 sulfide samples vary from 5.2× 10^(-3)to 7.2× 10^(-3), δ^(34)S values for 7 sulfate samples vary from 16.3 × 10^(-3) to 22.3 × 10^(-3), and 1 native sulphur sample has a δ^(34)S value of 8.2 × 10^(-3). The major sources of sulfur for hydrothermal sediment are intermediate to acid volcanic rocks and sea water sulfate, and it is possible that the partial sulfur of hydrothermal sediment is from the pelagic sediment by the interaction between hydrothermal fluid and sediment. The reasons of causing the distinct differences in sulfur isotopic values for sulfide samples from hydrothermal sediment ( compared with other hydrothermal fields), are the differences in the sources of sulfur, the magmatic activity and the tectonic evolution in different hydrothermal fields. The sulfur evolution is a long and complex process in the seafloor hydrothermal system, involving the ascending of heating sea water, the interaction between fluid and volcanic rocks, the mixing of sea water sulfate and sulfur from intermediate to acid volcanic rocks, and the fluid/pelagic-sediment interaction. And the interaction between sea water and intermediate to acid volcanic rocks is an important mechanism for the sulfur evolution in the Jade hydrothermal field. 展开更多
关键词 sulfur isotopic composition seafloor hydrothermal sediment Jade hydrothermal field
下载PDF
Sulfur isotopic composition of modern seafloor hydrothermal sediment and its geological significance
3
作者 曾志刚 李军 +2 位作者 蒋富清 秦蕴珊 翟世奎 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2002年第4期519-528,共10页
A total of 1 264 sulfur isotopic values for modern seafloor hydrothermel sediments from different hydrothermal fields have been collected.On this basis,combining our sulfur isotpic data for surface hydrothermal sedime... A total of 1 264 sulfur isotopic values for modern seafloor hydrothermel sediments from different hydrothermal fields have been collected.On this basis,combining our sulfur isotpic data for surface hydrothermal sediments from the Jade hydrohtermal field in the Okinawa Trough and the TAG hydrothermal field in the Mid-Atlantic Ridge,respectively,and comparing the sulfur isotopic compositions and analyzing their sources of sulfur in seafloor hydrothermal sediments from different geologic-tectonic setting,the results show that:(1) sulfur isotopic values of sulfides and sulfates in modern seafloor hydrothermal sediments are concentrated in a narrow range,δ 34S values of sulfides vary from 1×10 -3 to 9×10 -3,with a mean of 4.5×10 -3 (n=1042),δ 34S values of sulfates vary from 19×10 -3 to 24×10 -3,with a mean of 21.3×10 -3(n=217);(2) comparing the sulfur isotopic compositions of hydrothermal sediments from the sediment-hosted hydrothermal fields,the range of sulfur isotopic values for hydrothermal sediments from the sediment-free hydrothermal fields is narrow relatively;(3) the differences of sulfur isotopic compositions in sulfides from different hydrothermal fields show the differences in the sources of sulfur.The sulfur of hydrothermal sulfides in the sediment-free mid-ocean ridges is mainly from mid- ocean ridge basalt,and partially from the reduced seawater sulfate,and it is the result of partially reduced seawater sulfate mixed with basaltic sulfur.In the sediment-hosted mid-ocean ridges and the back-arc basins,the volcanics,the sediments and the organic matters also can offer their sulfur for forming hydrothermal sulfides;(4)the variations of sulfur isotopic compositions and the different sources of sulfur for hydrothermal sediments may be attributed to the various physical-chemical characteristics of hydrothermal fluids,the magmatic evolution and the different geologic-tectonic settings of seafloor hydrothermal systems. 展开更多
关键词 Modern seafloor hydrothermal sediment sulfur isotopic composition geologic significance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部