This paper reports that diamond single crystals were synthesized from sulfur-added Ni70Mn25Co5+C system under high pressure and high temperature (HPHT). It was found that additive sulfur had inhibited the nucleatio...This paper reports that diamond single crystals were synthesized from sulfur-added Ni70Mn25Co5+C system under high pressure and high temperature (HPHT). It was found that additive sulfur had inhibited the nucleation and growth of diamond to some extent. X-ray diffraction of the collected sample indicated that under the synthesis conditions, a new compound MnS had been formed through the reaction of additive sulfur with manganese in the catalyst. The MnS has a fcc structure, and its average crystal size was about 30 nm. By scanning electron microscope, the {111} surface of diamond was found to be flat, while there was usually a large depression on the central region of {100}. Further observation showed that there were many small upside-down pyramidal pits in the expression. The results of x-ray photoelectron spectroscopy shows that MnS can only be detected in the depression in the range of detection precision. It was inferred that MnS had been dissolved in the melted alloy during the growth experiment, and precipitated in the sequent quenching process.展开更多
文摘This paper reports that diamond single crystals were synthesized from sulfur-added Ni70Mn25Co5+C system under high pressure and high temperature (HPHT). It was found that additive sulfur had inhibited the nucleation and growth of diamond to some extent. X-ray diffraction of the collected sample indicated that under the synthesis conditions, a new compound MnS had been formed through the reaction of additive sulfur with manganese in the catalyst. The MnS has a fcc structure, and its average crystal size was about 30 nm. By scanning electron microscope, the {111} surface of diamond was found to be flat, while there was usually a large depression on the central region of {100}. Further observation showed that there were many small upside-down pyramidal pits in the expression. The results of x-ray photoelectron spectroscopy shows that MnS can only be detected in the depression in the range of detection precision. It was inferred that MnS had been dissolved in the melted alloy during the growth experiment, and precipitated in the sequent quenching process.