In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint....In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides.展开更多
The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime s...The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.展开更多
In this study, 13 strong-gluten wheat varieties screened by the Key Project of Modern Agricultural Industry Technology System "Study on Industrial Technology for Strong-gluten Wheat from Lime Concretion Black Soil Ar...In this study, 13 strong-gluten wheat varieties screened by the Key Project of Modern Agricultural Industry Technology System "Study on Industrial Technology for Strong-gluten Wheat from Lime Concretion Black Soil Area in the Huanghuai Wheat Region" were used as experimental materials to investigate their bread-making quality, noodle-making quality and other related characteristics. The results showed that more than half of the wheat varieties had better bread-making quality; the bread made from wheat with longer dough mixing time than 3.0 min had better texture, lighter color, and better taste. All these 13 strong-gluten wheat varieties showed good noodle-making quality in color, appearance, smoothness and taste; the differences between varieties were mainly found in palatability and viscoelasticity. Jimai 20, Xinong 979, Zhengmai 7698, Ji'nan 17 and Zhengmai 9023 exhibited excellent bread-making quality; Zhengmai 366, Jimai 20 and Xinong 979 displayed excellent noodle-making quality. Fresh dough sheets made from Zhengmai 366, Jimai 20 and Xinong 979 exhibited slight color variation within 24 h and high peak starch paste viscosity; dry and cooked noodles made from Zhengmai 366, Jimai 20 and Xinong 979 had good quality.展开更多
To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, c...To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, confining pressure, vibration frequency, consolidation ratio, and cycle number on the dynamic characteristics were discussed. Experimental results indicate that specimens at low moisture contents tend to damage along the 30~ shear plane and they present brittle failure, while saturated specimens show swelling phenomenon and plastic failure. A redtiction in cohesion has been observed for unsaturated samples at large number of cycles, while it is opposite for the internal friction angle. For the saturated specimens, both the cohesion and internal friction angle decrease with increasing number of cycles.展开更多
In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the por...In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the porosity/volumetric lime content ratio(η/Liv)as the main parameter.η/Liv represents the volume of void influenced by compaction effort and lime volume.The evolution of qu was analyzed for each soil using the coefficient of determination as the optimization parameter.Aiming at providing adjustments to the mechanical resistance values,the η/Liv parameter was modified to η/LivC using the adjustment exponent C(to make qu-η/Liv variation rates compatible).The results show that with the decrease of η/LivC.qu increases potentially and the optimized values of C were 0.14-0.18.The mechanical resistance data show similar trends between qu and η/LivC for the studied silty soil-ground lime mixtures,which were cured at ambient temperature(23±2)℃ with different curing times of 28-360 d.Finally,optimized equations were presented using the normalized strengths and the proposed optimization model,which show 6% error and 95% acceptability on average.展开更多
An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil.Lime and fly ash were added to the expansive soil at 4%-6% a...An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil.Lime and fly ash were added to the expansive soil at 4%-6% and 40%-50% by dry weight of soil,respectively.Testing specimens were determined and examined in chemical composition,grain size distribution,consistency limits,compaction,CBR,free swell and swell capacity.The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil.Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash,which decreases plasticity index.As the amount of lime and fly ash is increased,there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure,and a corresponding increase in the percentage of coarse particles,optimum moisture content and CBR value.Based on the results,it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.展开更多
This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansiv...This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansive soil,such as plasticity,shrink-swell behavior,unconfined compressive strength(UCS),mineralogical and microstructural characteristics were investigated.The expansive soil was stabilized at its optimum lime content(7%) for producing maximum strength,and was modified with four different quantities of PM in small dosages(0.25%-2%).Cylindrical soil samples,38 mm in diameter and 76 mm in height,were cast and cured for varying periods to evaluate the strength of the amended soil.The spent samples after strength tests were further used for determination of other properties.The test results revealed that PM modification led to a substantial improvement in 7-d strength and noticeable increase in 28-d strength of the lime-stabilized soil(LSS).The addition of PM does not cause any detrimental changes to the shrink-swell properties as well as plasticity nature of the stabilized soil,despite being a material of organic origin.Mineralogical investigation revealed that the formation of calcium silicate hydrate(CSH) minerals,similar to that of pure lime stabilization with only the type of mineral varying due to the modification of PM addition,does not significantly alter the microstructure of the LSS except for superficial changes being noticed.展开更多
Some Inceptisols representing the Singla catchment area in Karimgaungedistrict of Assam, India, were studied for lime requirement as influenced by the nature of soilacidity. The electrostatically bonded (EB)-H^+ and E...Some Inceptisols representing the Singla catchment area in Karimgaungedistrict of Assam, India, were studied for lime requirement as influenced by the nature of soilacidity. The electrostatically bonded (EB)-H^+ and EB-Al^(3+) acidities constituted 33 and 67percent of exchangeable acidity while EB-H^+, EB-Al^(3+), exchangeable and pH-dependent aciditiescomprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a majorcontribution towards the total potential acidity (67%~84%). Grand mean of lime requirementdetermined by the laboratory incubation method and estimated by the methods of New Woodruff,Woodruff and Peech as expressed in MgCaCO_3 ha^(-1) was in the order: Woodruff (15.6) > New Woodruff(14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity andlime requirement methods with selected soil properties showed that pH in three media, namely water,1 mol L^(-1) KC1 and 0.01 mol L^(-1) CaCl_2, had a significant negative correlation with differentforms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positivecorrelations with EB-Al^(3+) acidity, exchangeable acidity, pH-dependent acidity and total potentialacidity, and also lime requirement methods. Extractable Al showed positive correlations withdifferent forms of acidity except EB-H^+ and EB-Al^(3+) acidities. The lime requirement by differentmethods depended upon the extractable aluminium. Significant positive correlations existed betweenlime requirements and different forms of acidity of the soils except EB-H^+ acidity and incubationmethod. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method didslightly better than the New Woodruff, incubation and Peech methods at estimating lime requirementand hence the Woodruff procedure may be recommended for routine soil testing because of its speedand simplicity.展开更多
Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and sal...Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.展开更多
Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay ...Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay in Southeast China is discussed in this paper. Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH 4, but lime addition had a contrary effect. Generally, application of lime and/or gypsum has little effect on soil electrical properties. Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth. The effect of lime reached only to 5 cm below its application layer. With leaching, Ca transferred from top soil to subsoil and decreased exchangeable Al in subsoil. Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.展开更多
Oleoresin is a major non-forest product collected from commercially mature or near mature pine trees. Efforts have been made to increase oleoresin yield, but basically limited to the genetic improvement of planting ma...Oleoresin is a major non-forest product collected from commercially mature or near mature pine trees. Efforts have been made to increase oleoresin yield, but basically limited to the genetic improvement of planting materials and the application of chemical stimulants to tapping surface of trees. Nutrition management may play a role, particularly for pine stands suffering from soil acidification and degradation. We set up a field experiment including application of water retainer, NPK complex fertilizer, lime and borax in different combinations to pine stands for oleoresin tapping with extremely low soil pH value and nutrition. Lime significantly affected the annual yield of oleoresin tapped from two pine species studied (P < 0.05). Among 3 levels of lime applied (0, 100, 200 g/tree), the oleoresin yield increased as the dose increased in slash pine, but was highest at 100 g/tree in masson pine. The doses of 167 g and 133 g of lime per tree were optimal or close to be optimal for slash pine and masson pine, respectively. The effects of other three matters applied were statistically insignificant (P > 0.10). In addition, all of the four matters applied did not influence the growth of both pine species. We concluded that proper use of lime alone may generate 15% to 35% of gain in oleoresin production for pine plantations with similar soil conditions in the region. We also discussed the potential of comprehensive soil or site management, and proposed further research for improvement of pine oleoresin production.展开更多
To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanis...To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed.展开更多
The soil of the Guabirotuba geological formation(Paraná Basin, Brazil) has physico-mechanical properties which are not suitable for its utilization in pavement construction, in protection of hillsides and slope...The soil of the Guabirotuba geological formation(Paraná Basin, Brazil) has physico-mechanical properties which are not suitable for its utilization in pavement construction, in protection of hillsides and slopes, or as shallow foundation support. Treatment of this soil by lime addition would improve its usability. The present context intends to determine the ratio between the splitting tensile strength(q;)and the unconfined compressive strength(q;) of clayey soil in the metropolitan region of Curitiba City,which has been treated with different lime contents and curing times. The control parameters evaluated include lime content(L), curing time(t), moisture content(w), and ratio of porosity to volumetric lime content(η/L;). It was observed that the q;/q;ratio is between 0.17 and 0.2 in relation to the curing time,and an exponential relation exists between them. Meanwhile, the unconfined compressive strength of lime-treated soil was found to be approximately four times the initial value.展开更多
The past decade has been characterized by the development of infrastructure in the main cities in West Africa.This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim o...The past decade has been characterized by the development of infrastructure in the main cities in West Africa.This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim of creating sustainable development.This paper examined the performance of the soil in Benin(West Africa).In this research,three objectives have been adopted in-depth on the performance characteristics of West Africans soil and aim to(i)accessing characteristics of soil types in the region;(ii)assessing the performance of these soils with 2%,3%and 5%of lime and(iii)characterizing landslide to evaluate the damage and potential instability.The methods used to examine these objectives are experimental tests according to standard French test.The particle size test,Proctor test,and Atterberg limits test which are physical tests and the mechanical tests such as dynamic penetration test,direct shear test,and oedometer test,were used to assess the first objective.The Proctor test and California bearing ratio test were examined for the second objective and geological,environmental,social and safety study of the river bank slide were evaluated for the third objective.This paper firstly reveals the unstable and stable areas in southern Benin(West Africa)with the presence of clays soil and gives an equation for predicting the unstable and stable area,and secondly shows that the proportion of percentage lime leading to the best performances varying between 2%and 3%.Finally,this paper shows that the sliding of a bank could be the consequence of the sudden receding water recorded in a valley.展开更多
A pot experiment was carried out to investigate the yield of Indian spinach (Basella alba L.) and their uptake and availability of phosphorus from lime and phosphorus amended acidic soil. Four rates of lime (L) equiva...A pot experiment was carried out to investigate the yield of Indian spinach (Basella alba L.) and their uptake and availability of phosphorus from lime and phosphorus amended acidic soil. Four rates of lime (L) equivalent to 0, 500, 1000 and 2000 kg CaCO3 ha-1 and four rates of phosphorus (P) equivalent to 0, 50, 100, and 150 kg·P·ha-1 of TSP were applied in combinations as treatments. Dry matter yield, P concentrations in shoot and root and P uptake by Indian spinach were determined after harvesting 10 weeks old plant and soil samples were collected from each pot to measure available P by Olsen method. Both L and P and their combinations had significant (P 0.001) effects on shoot and root biomass, shoot and root P concentrations, P uptake by Indian spinach and P availability. Although lime and P increased biomass production, P concentrations of shoot and root, and its uptake by Indian spinach and available P, this effect was boosted by combining L with P applied. 1000 kg lime plus 100 kg P were adequate for plant growth. Available P was strongly and positively correlated (R2 = 0.909, P = 0.000) with P uptake by plant. Results of the present study indicated that lime and phosphorus could be used in combination to enhance plant growth.展开更多
A pot experiment was carried out to determine the effect of lime and phosphorus on the growth and nutrient uptake by Indian spinach (Basella alba L.) on an acidic soil. The experimental soil was amended with four leve...A pot experiment was carried out to determine the effect of lime and phosphorus on the growth and nutrient uptake by Indian spinach (Basella alba L.) on an acidic soil. The experimental soil was amended with four levels of lime (0, 500, 1000 and 2000 kg CaCO3 ha-1) and phosphorus (P) (0, 50, 100, and150 kgP ha-1) and their combinations. The results showed that lime and P applied separately or in combination had significant (P < 0.001) effects on growth parameters (height and number of leaves), fresh and dry weight of shoot and root and N, K and Ca uptake by Indian spinach. Combined application of lime and P gave a better result than the separate application of lime and P. Application of 2000 kg·ha-1 lime plus 150 kg P ha-1 had higher uptake of N, K and Ca and better morphological characters that eventually resulted in greater yield compared with other treatments. The results revealed that lime and phosphorus could be used in combination to improve growth performance and nutrient uptake when plants grown in an acidic soil.展开更多
The present study is inscribed within the framework of the amelioration of the soils of the Santchou plain for employment as pavement subgrade. The bearing capacity proposed by these soils at their respective optimum ...The present study is inscribed within the framework of the amelioration of the soils of the Santchou plain for employment as pavement subgrade. The bearing capacity proposed by these soils at their respective optimum dry densities is relatively small, although most of these experimental California Bearing Ratio (CBR) values of the studied soils are more important than the ones prescribed by the American Association of State Highway and Transportation Officials Classification system (AASHTO) for A5, A6, and A7 types. The stabilization of this soils with lime has been chosen to improve the bearing capacity and by association, their resilient modulus. The results of this study show that the increase of lime content is not proportional with the increase of the expected mechanical performances. In fact, the literature explains that when the lime content arrives at an optimum, the mechanical parameters no longer increase, but decrease significantly. After this optimum, the soil stabilization no longer shows advantages in the increase of geo-mechanical properties of soils.展开更多
Ferralsols form a dominant type of soil on which most crops are grown in the Lake Victoria agro-ecological zone. Soil acidity has been recognized among the most important agricultural problems in such soils, which adv...Ferralsols form a dominant type of soil on which most crops are grown in the Lake Victoria agro-ecological zone. Soil acidity has been recognized among the most important agricultural problems in such soils, which adversely affect crop production and productivity. A study was conducted with the objective of determining the effect of applying low rates of lime and chicken manure on selected soil chemical properties. Using a Split Plot Factorial Randomized Complete Block Design, agricultural lime (0.0, 0.5, 1.0, 1.5 & 2.0 t·ha<sup>-1</sup>) as the main plot and chicken manure (0.0, 1.0, 2.0 & 3.0 t·ha<sup>-1</sup>) as sub-plot were applied, replicated three times. The test crop was common bean var. NABE 15. The experiment was conducted for three rainy seasons, two seasons on-station and one season on-farm on Ferralsol soil in the Lake Victoria crescent of central Uganda. The results showed that applying low rates of lime with chicken manure significantly (p ·ha<sup>-1</sup> lime was applied with the four chicken manure rates in Mukono. From the study, we recommend the application of small quantities of lime at 1.0 t·ha<sup>-1</sup> with either 2.0 or 3.0 t·ha<sup>-1</sup> chicken manure.展开更多
To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R5...To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R518 primers targeting the 16S rRNA genes of V3 region. The amplified fragments were analyzed by perpendicular DGGE. Analyzing of species richness index S and Shannon diversity index H revealed that there was a high diversity of soil bacterial community compositions among all treatments after incorporation of crop residues and fertilizing under field conditions. Eleven DGGE bands recovered were re-amplified, sequenced. Phylogenetic analysis of the representative DGGE fingerprints identified four groups of the prokaryotic communities in the soil by returning wheat residues and fertilizing under field conditions. The bacterial communities belonged to gamma proteobacterium, Cupriavidus sp, halophilic eubacterium, Acidobacterium sp, Sorangium sp, delta proteobacterium, Streptococcus sp and Streptococcus agalactiae were main bacterial communities. Principal Component Analysis (PCA) showed that there were the differences in DNA profiles among the six treatments. It showed that wheat residue returning, maize residue returning and fertilizing all can improve bacterial diversity in varying degrees. As far as improvement of bacterial diversity was concerned, wheat residue returning was higher than fertilizing, and fertilizing higher than maize residue returning.展开更多
This study addresses an experimental approach to stabilizing clay soils with lime.In the preliminary stage and in order to require characteristic properties,untreated clay and sand samples are collected on site and su...This study addresses an experimental approach to stabilizing clay soils with lime.In the preliminary stage and in order to require characteristic properties,untreated clay and sand samples are collected on site and subjected to laboratory identification tests.Then,the so-called“trial and error”process based on production test series is used to mix with water by varying the proportions of the constituents.Using a manual press with a capacity of 5 to 10 tonnes,equipped with a 10×15×28 cm^(3) mould,the free-standing and heavy blocks are produced from the firm mixtures retained.After cures of 7,14 and 28 days,the results of the tests show that the resistance to compression(RC)of the blocks in the dry state increases depending on the lime dosage and the duration of cure.At 6%lime and around 25%sand,the value of the RC of 4,966 MPa after 28 days is higher than the recommended values for load-bearing walls by the Construction Materials Center(CMC)of N’Djamena(2.4 MPa)and CRATerre(4.0 MPa).On the other hand,a 24-h stay of the dry blocks in the water causes the RC to fall from 69%to 72%depending on the lime dosage.However,the absorption coefficient of 2.23 g/cm^(2)·s^(1/2) of blocks with 6%lime is much less than 20 g/cm^(2)·s^(1/2),limit value below which the NFP554 standard qualifies the low capillarity blocks.In short,this stabilization approach makes it possible to obtain blocks resistant to aesthetic appearance,low capillarity and cost to build walls.展开更多
文摘In tropical regions,heavy rainfall induces erosion and shallow landslides on road embankments.Cement-based stabilization methods,common in these regions,contribute to climate change due to their high carbon footprint.This study explored the potential application of coir fiber-reinforced laterite soil-bottom ash mixtures as embankment materials in the tropics.The objective is to enhance engineered embankment slopes'erosion resistance and stability while offering reuse options for industrial byproducts.This study examined various mix designs for unconfined compressive strength(UCS)and permeability,utilizing 30%bottom ash(BA)and 1%coir fiber(CF)with varying sizes ranging from 10 to 40 mm,6%lime,and laterite soil(LS),followed by microstructural analyses.The results demonstrate that the compressive strength increases as the CF length increases to 25 mm.In contrast,permeability increases continuously with increasing CF length.Lime-treated mixtures exhibit superior short-and long-term strength and reduce permeability owing to the formation of cementitious materials,as confirmed by microstructural analyses.A lab-scale slope box was constructed to evaluate the surface erosion of the stabilized laterite soil embankment.Based on the rainfall simulation results,the LS-BA-CF mixtures show better resistance to erosion and deformation compared to untreated LS,especially when lime is added to the top layer.This study provides insights into a sustainable and cost-effective approach for slope stabilization using BA and CF,offering a promising solution for tropical regions susceptible to surface erosion and landslides.
文摘The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System(CARS-03)Special Fund for Seed Industry Construction from Taishan Scholar FoundationNational Science and Technology Major Project for Genetic Improvement of Crop Quality~~
文摘In this study, 13 strong-gluten wheat varieties screened by the Key Project of Modern Agricultural Industry Technology System "Study on Industrial Technology for Strong-gluten Wheat from Lime Concretion Black Soil Area in the Huanghuai Wheat Region" were used as experimental materials to investigate their bread-making quality, noodle-making quality and other related characteristics. The results showed that more than half of the wheat varieties had better bread-making quality; the bread made from wheat with longer dough mixing time than 3.0 min had better texture, lighter color, and better taste. All these 13 strong-gluten wheat varieties showed good noodle-making quality in color, appearance, smoothness and taste; the differences between varieties were mainly found in palatability and viscoelasticity. Jimai 20, Xinong 979, Zhengmai 7698, Ji'nan 17 and Zhengmai 9023 exhibited excellent bread-making quality; Zhengmai 366, Jimai 20 and Xinong 979 displayed excellent noodle-making quality. Fresh dough sheets made from Zhengmai 366, Jimai 20 and Xinong 979 exhibited slight color variation within 24 h and high peak starch paste viscosity; dry and cooked noodles made from Zhengmai 366, Jimai 20 and Xinong 979 had good quality.
基金Supported by the National Natural Science Foundation of China(40772185)the Knowledge Innovation Program of Chinese Academy of Sciences(kzcx2-yw-150)
文摘To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, confining pressure, vibration frequency, consolidation ratio, and cycle number on the dynamic characteristics were discussed. Experimental results indicate that specimens at low moisture contents tend to damage along the 30~ shear plane and they present brittle failure, while saturated specimens show swelling phenomenon and plastic failure. A redtiction in cohesion has been observed for unsaturated samples at large number of cycles, while it is opposite for the internal friction angle. For the saturated specimens, both the cohesion and internal friction angle decrease with increasing number of cycles.
基金the Federal University of Technology-Parana, to the CAPES, CNPqFundacao Araucaria do Parana in Brazil for financial support
文摘In the present study,unconfined compressive strength(qu)values of two lime-treated soils(soil 1 and 2)with curing times of 28 d,90 d and 360 d were optimized.The influence of void/lime ratio was represented by the porosity/volumetric lime content ratio(η/Liv)as the main parameter.η/Liv represents the volume of void influenced by compaction effort and lime volume.The evolution of qu was analyzed for each soil using the coefficient of determination as the optimization parameter.Aiming at providing adjustments to the mechanical resistance values,the η/Liv parameter was modified to η/LivC using the adjustment exponent C(to make qu-η/Liv variation rates compatible).The results show that with the decrease of η/LivC.qu increases potentially and the optimized values of C were 0.14-0.18.The mechanical resistance data show similar trends between qu and η/LivC for the studied silty soil-ground lime mixtures,which were cured at ambient temperature(23±2)℃ with different curing times of 28-360 d.Finally,optimized equations were presented using the normalized strengths and the proposed optimization model,which show 6% error and 95% acceptability on average.
文摘An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil.Lime and fly ash were added to the expansive soil at 4%-6% and 40%-50% by dry weight of soil,respectively.Testing specimens were determined and examined in chemical composition,grain size distribution,consistency limits,compaction,CBR,free swell and swell capacity.The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil.Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash,which decreases plasticity index.As the amount of lime and fly ash is increased,there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure,and a corresponding increase in the percentage of coarse particles,optimum moisture content and CBR value.Based on the results,it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.
文摘This study attempted to investigate the potential of sugarcane press mud(PM) as a secondary additive in conjunction with lime for the stabilization of an expansive soil.The physico-mechanical properties of an expansive soil,such as plasticity,shrink-swell behavior,unconfined compressive strength(UCS),mineralogical and microstructural characteristics were investigated.The expansive soil was stabilized at its optimum lime content(7%) for producing maximum strength,and was modified with four different quantities of PM in small dosages(0.25%-2%).Cylindrical soil samples,38 mm in diameter and 76 mm in height,were cast and cured for varying periods to evaluate the strength of the amended soil.The spent samples after strength tests were further used for determination of other properties.The test results revealed that PM modification led to a substantial improvement in 7-d strength and noticeable increase in 28-d strength of the lime-stabilized soil(LSS).The addition of PM does not cause any detrimental changes to the shrink-swell properties as well as plasticity nature of the stabilized soil,despite being a material of organic origin.Mineralogical investigation revealed that the formation of calcium silicate hydrate(CSH) minerals,similar to that of pure lime stabilization with only the type of mineral varying due to the modification of PM addition,does not significantly alter the microstructure of the LSS except for superficial changes being noticed.
文摘Some Inceptisols representing the Singla catchment area in Karimgaungedistrict of Assam, India, were studied for lime requirement as influenced by the nature of soilacidity. The electrostatically bonded (EB)-H^+ and EB-Al^(3+) acidities constituted 33 and 67percent of exchangeable acidity while EB-H^+, EB-Al^(3+), exchangeable and pH-dependent aciditiescomprised 6, 14, 20 and 80 percent of total potential acidity. The pH-dependent acidity made a majorcontribution towards the total potential acidity (67%~84%). Grand mean of lime requirementdetermined by the laboratory incubation method and estimated by the methods of New Woodruff,Woodruff and Peech as expressed in MgCaCO_3 ha^(-1) was in the order: Woodruff (15.6) > New Woodruff(14.9) > Peech (5.1) > incubation (5.0). Correlations analysis among different forms of acidity andlime requirement methods with selected soil properties showed that pH in three media, namely water,1 mol L^(-1) KC1 and 0.01 mol L^(-1) CaCl_2, had a significant negative correlation with differentforms of acidity and lime requirement methods. Exchangeable Fe and Al showed significant positivecorrelations with EB-Al^(3+) acidity, exchangeable acidity, pH-dependent acidity and total potentialacidity, and also lime requirement methods. Extractable Al showed positive correlations withdifferent forms of acidity except EB-H^+ and EB-Al^(3+) acidities. The lime requirement by differentmethods depended upon the extractable aluminium. Significant positive correlations existed betweenlime requirements and different forms of acidity of the soils except EB-H^+ acidity and incubationmethod. The nature of soil acidity was mostly pH-dependent. Statistically, the Woodruff method didslightly better than the New Woodruff, incubation and Peech methods at estimating lime requirementand hence the Woodruff procedure may be recommended for routine soil testing because of its speedand simplicity.
基金Project(05YFSYSF00300) supported by the Natural Science Foundation of Tianjin
文摘Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.
文摘Application of lime or gypsum is a common agricultural practice to ameliorate soils with low pH which prohibits crop production. Its integrated effect on soil properties in a red soil derived from Quaternary red clay in Southeast China is discussed in this paper. Application of gypsum in the topsoil without leaching raised soil pH and promoted the production of soil NH 4, but lime addition had a contrary effect. Generally, application of lime and/or gypsum has little effect on soil electrical properties. Gypsum had a little effect on soil exchange complex and its effect went down to 30 cm in depth. The effect of lime reached only to 5 cm below its application layer. With leaching, Ca transferred from top soil to subsoil and decreased exchangeable Al in subsoil. Gypsum application led to a sharp decrease in soil exchangeable Mg but had no effect on K.
文摘Oleoresin is a major non-forest product collected from commercially mature or near mature pine trees. Efforts have been made to increase oleoresin yield, but basically limited to the genetic improvement of planting materials and the application of chemical stimulants to tapping surface of trees. Nutrition management may play a role, particularly for pine stands suffering from soil acidification and degradation. We set up a field experiment including application of water retainer, NPK complex fertilizer, lime and borax in different combinations to pine stands for oleoresin tapping with extremely low soil pH value and nutrition. Lime significantly affected the annual yield of oleoresin tapped from two pine species studied (P < 0.05). Among 3 levels of lime applied (0, 100, 200 g/tree), the oleoresin yield increased as the dose increased in slash pine, but was highest at 100 g/tree in masson pine. The doses of 167 g and 133 g of lime per tree were optimal or close to be optimal for slash pine and masson pine, respectively. The effects of other three matters applied were statistically insignificant (P > 0.10). In addition, all of the four matters applied did not influence the growth of both pine species. We concluded that proper use of lime alone may generate 15% to 35% of gain in oleoresin production for pine plantations with similar soil conditions in the region. We also discussed the potential of comprehensive soil or site management, and proposed further research for improvement of pine oleoresin production.
文摘To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed.
基金the financial support given by CAPES-Brasil,Fundao Araucria do Paran and CNPq
文摘The soil of the Guabirotuba geological formation(Paraná Basin, Brazil) has physico-mechanical properties which are not suitable for its utilization in pavement construction, in protection of hillsides and slopes, or as shallow foundation support. Treatment of this soil by lime addition would improve its usability. The present context intends to determine the ratio between the splitting tensile strength(q;)and the unconfined compressive strength(q;) of clayey soil in the metropolitan region of Curitiba City,which has been treated with different lime contents and curing times. The control parameters evaluated include lime content(L), curing time(t), moisture content(w), and ratio of porosity to volumetric lime content(η/L;). It was observed that the q;/q;ratio is between 0.17 and 0.2 in relation to the curing time,and an exponential relation exists between them. Meanwhile, the unconfined compressive strength of lime-treated soil was found to be approximately four times the initial value.
基金Project(41627801)supported by the National Major Scientific Instruments Development Project of ChinaProject(41430634)supported by the State Key Program of National Natural Science Foundation of China+1 种基金Project(2016YJ004)supported by the Opening Fund for Innovation Platform of ChinaProject(2016G002-F)supported by the Technology Research and Development Plan Program of China Railway Corporation
文摘The past decade has been characterized by the development of infrastructure in the main cities in West Africa.This requires more comprehensive studies of geotechnical properties of the soil in the region with an aim of creating sustainable development.This paper examined the performance of the soil in Benin(West Africa).In this research,three objectives have been adopted in-depth on the performance characteristics of West Africans soil and aim to(i)accessing characteristics of soil types in the region;(ii)assessing the performance of these soils with 2%,3%and 5%of lime and(iii)characterizing landslide to evaluate the damage and potential instability.The methods used to examine these objectives are experimental tests according to standard French test.The particle size test,Proctor test,and Atterberg limits test which are physical tests and the mechanical tests such as dynamic penetration test,direct shear test,and oedometer test,were used to assess the first objective.The Proctor test and California bearing ratio test were examined for the second objective and geological,environmental,social and safety study of the river bank slide were evaluated for the third objective.This paper firstly reveals the unstable and stable areas in southern Benin(West Africa)with the presence of clays soil and gives an equation for predicting the unstable and stable area,and secondly shows that the proportion of percentage lime leading to the best performances varying between 2%and 3%.Finally,this paper shows that the sliding of a bank could be the consequence of the sudden receding water recorded in a valley.
文摘A pot experiment was carried out to investigate the yield of Indian spinach (Basella alba L.) and their uptake and availability of phosphorus from lime and phosphorus amended acidic soil. Four rates of lime (L) equivalent to 0, 500, 1000 and 2000 kg CaCO3 ha-1 and four rates of phosphorus (P) equivalent to 0, 50, 100, and 150 kg·P·ha-1 of TSP were applied in combinations as treatments. Dry matter yield, P concentrations in shoot and root and P uptake by Indian spinach were determined after harvesting 10 weeks old plant and soil samples were collected from each pot to measure available P by Olsen method. Both L and P and their combinations had significant (P 0.001) effects on shoot and root biomass, shoot and root P concentrations, P uptake by Indian spinach and P availability. Although lime and P increased biomass production, P concentrations of shoot and root, and its uptake by Indian spinach and available P, this effect was boosted by combining L with P applied. 1000 kg lime plus 100 kg P were adequate for plant growth. Available P was strongly and positively correlated (R2 = 0.909, P = 0.000) with P uptake by plant. Results of the present study indicated that lime and phosphorus could be used in combination to enhance plant growth.
文摘A pot experiment was carried out to determine the effect of lime and phosphorus on the growth and nutrient uptake by Indian spinach (Basella alba L.) on an acidic soil. The experimental soil was amended with four levels of lime (0, 500, 1000 and 2000 kg CaCO3 ha-1) and phosphorus (P) (0, 50, 100, and150 kgP ha-1) and their combinations. The results showed that lime and P applied separately or in combination had significant (P < 0.001) effects on growth parameters (height and number of leaves), fresh and dry weight of shoot and root and N, K and Ca uptake by Indian spinach. Combined application of lime and P gave a better result than the separate application of lime and P. Application of 2000 kg·ha-1 lime plus 150 kg P ha-1 had higher uptake of N, K and Ca and better morphological characters that eventually resulted in greater yield compared with other treatments. The results revealed that lime and phosphorus could be used in combination to improve growth performance and nutrient uptake when plants grown in an acidic soil.
文摘The present study is inscribed within the framework of the amelioration of the soils of the Santchou plain for employment as pavement subgrade. The bearing capacity proposed by these soils at their respective optimum dry densities is relatively small, although most of these experimental California Bearing Ratio (CBR) values of the studied soils are more important than the ones prescribed by the American Association of State Highway and Transportation Officials Classification system (AASHTO) for A5, A6, and A7 types. The stabilization of this soils with lime has been chosen to improve the bearing capacity and by association, their resilient modulus. The results of this study show that the increase of lime content is not proportional with the increase of the expected mechanical performances. In fact, the literature explains that when the lime content arrives at an optimum, the mechanical parameters no longer increase, but decrease significantly. After this optimum, the soil stabilization no longer shows advantages in the increase of geo-mechanical properties of soils.
文摘Ferralsols form a dominant type of soil on which most crops are grown in the Lake Victoria agro-ecological zone. Soil acidity has been recognized among the most important agricultural problems in such soils, which adversely affect crop production and productivity. A study was conducted with the objective of determining the effect of applying low rates of lime and chicken manure on selected soil chemical properties. Using a Split Plot Factorial Randomized Complete Block Design, agricultural lime (0.0, 0.5, 1.0, 1.5 & 2.0 t·ha<sup>-1</sup>) as the main plot and chicken manure (0.0, 1.0, 2.0 & 3.0 t·ha<sup>-1</sup>) as sub-plot were applied, replicated three times. The test crop was common bean var. NABE 15. The experiment was conducted for three rainy seasons, two seasons on-station and one season on-farm on Ferralsol soil in the Lake Victoria crescent of central Uganda. The results showed that applying low rates of lime with chicken manure significantly (p ·ha<sup>-1</sup> lime was applied with the four chicken manure rates in Mukono. From the study, we recommend the application of small quantities of lime at 1.0 t·ha<sup>-1</sup> with either 2.0 or 3.0 t·ha<sup>-1</sup> chicken manure.
文摘To analyze the bacterial communities in lime concretion black soil upon the incorporation of crop residues for two years in wheat-maize system, total DNA was directly extracted and PCR-amplified with the F357GC and R518 primers targeting the 16S rRNA genes of V3 region. The amplified fragments were analyzed by perpendicular DGGE. Analyzing of species richness index S and Shannon diversity index H revealed that there was a high diversity of soil bacterial community compositions among all treatments after incorporation of crop residues and fertilizing under field conditions. Eleven DGGE bands recovered were re-amplified, sequenced. Phylogenetic analysis of the representative DGGE fingerprints identified four groups of the prokaryotic communities in the soil by returning wheat residues and fertilizing under field conditions. The bacterial communities belonged to gamma proteobacterium, Cupriavidus sp, halophilic eubacterium, Acidobacterium sp, Sorangium sp, delta proteobacterium, Streptococcus sp and Streptococcus agalactiae were main bacterial communities. Principal Component Analysis (PCA) showed that there were the differences in DNA profiles among the six treatments. It showed that wheat residue returning, maize residue returning and fertilizing all can improve bacterial diversity in varying degrees. As far as improvement of bacterial diversity was concerned, wheat residue returning was higher than fertilizing, and fertilizing higher than maize residue returning.
文摘This study addresses an experimental approach to stabilizing clay soils with lime.In the preliminary stage and in order to require characteristic properties,untreated clay and sand samples are collected on site and subjected to laboratory identification tests.Then,the so-called“trial and error”process based on production test series is used to mix with water by varying the proportions of the constituents.Using a manual press with a capacity of 5 to 10 tonnes,equipped with a 10×15×28 cm^(3) mould,the free-standing and heavy blocks are produced from the firm mixtures retained.After cures of 7,14 and 28 days,the results of the tests show that the resistance to compression(RC)of the blocks in the dry state increases depending on the lime dosage and the duration of cure.At 6%lime and around 25%sand,the value of the RC of 4,966 MPa after 28 days is higher than the recommended values for load-bearing walls by the Construction Materials Center(CMC)of N’Djamena(2.4 MPa)and CRATerre(4.0 MPa).On the other hand,a 24-h stay of the dry blocks in the water causes the RC to fall from 69%to 72%depending on the lime dosage.However,the absorption coefficient of 2.23 g/cm^(2)·s^(1/2) of blocks with 6%lime is much less than 20 g/cm^(2)·s^(1/2),limit value below which the NFP554 standard qualifies the low capillarity blocks.In short,this stabilization approach makes it possible to obtain blocks resistant to aesthetic appearance,low capillarity and cost to build walls.