In this work, the absorption-hydration hybrid method was used to recover (hydrogen + nitrogen) from (hydrogen + nitrogen + methane + argon) tail gas mixtures of synthetic ammonia plant through hydrate formatio...In this work, the absorption-hydration hybrid method was used to recover (hydrogen + nitrogen) from (hydrogen + nitrogen + methane + argon) tail gas mixtures of synthetic ammonia plant through hydrate formation/dissociation. A high-pressure reactor with magnetic stirrer was used to study the separation efficiency. The in-fluences of the concentration of anti-agglomerant, temperature, pressure, initial gas-liquid volume ratio, and oil-water volume ratio on the separation efficiency were systematically investigated in the presence of tetrahydro-furan (THF). Anti-agglomerant was used to disperse hydrate particles into the condensate phase for water-in-oil emulsion system. Since nitrogen is the material for ammonia production, the objective production in our separation process is (hydrogen + nitrogen). Our experimental results show that by adopting appropriate operating conditions, high concentration of (hydrogen + nitrogen) can be obtained using the proposed technology based on forming hydrate.展开更多
The corrosion of materials in combustion chamber of yellow phosphor tall gas was investrgated. The results reveal that the corrosion behavior is different for different materials under actual work conditions.
The preparation of immobilizing-catalysts for decomposing ozone by using dipping method was studied. XRD, XPS and TEM were used to characterize the catalysts. The three kinds of catalysts were selected preferentially,...The preparation of immobilizing-catalysts for decomposing ozone by using dipping method was studied. XRD, XPS and TEM were used to characterize the catalysts. The three kinds of catalysts were selected preferentially, and their catalytic activities were investigated. The results showed that the catalyst with activated carbon dipping acetate(active components are Mn:Cu=3:2, active component proportion in catalyst is 15%, calcination temperature is 200℃) has the best catalytic activity for ozone decomposing. One gram of catalyst can decompose 17.6 g ozone at initial ozone concentration of 2.5 g/m 3 and the residence time in reactor of 0.1 s. The experimental results also indicated that humidity of reaction system had negative effect on catalytic activity.展开更多
A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency ...A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency of the combined cycle system has been calculated which is up to 53.9%.展开更多
In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-l...In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient.展开更多
The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with t...The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.展开更多
Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst...Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst(T-202) were studied in a continuous flow fixed bed reactor under pressures of 1.6-2.8 MPa, space time of 1.32-3.55 s and temperatures of 240-360 °C. Though the COG contains about 0.6 mol/mol H2, hydrogenation of CO and CO2 is not significant on this catalyst. The conversions of unsaturated hydrocarbons depend on their molecular structures. Diolefins and alkynes can be completely hydrogenated even at relatively low temperature and pressure. Olefins, in contrast, can only be progressively hydrogenated with increasing temperature and pressure. The hydrodesulfurization(HDS) of CS2 on this catalyst is easy. Complete conversion of CS2 was observed in the whole range of the conditions used in this work. The original COS in the COG can also be easily converted to a low level. However, its complete HDS is difficult due to the relatively high concentration of CO in the COG and due to the limitation of thermodynamics. H2 S can react with unsaturated hydrocarbons to form ethyl mercaptan and thiophene, which are then progressively hydrodesulfurized with increasing temperature and pressure. Based on the experimental observations, reaction kinetic models for the conversion of ethylene and sulfur-containing compounds were proposed; the values of the parameters in the models were obtained by regression of the experimental data.展开更多
Gas flaring is concerned with the combustion of lighter ends of hydrocarbon mostly produced in association with crude oil. Flare networks are designed to handle the gas volume required to be flared. Most times, this f...Gas flaring is concerned with the combustion of lighter ends of hydrocarbon mostly produced in association with crude oil. Flare networks are designed to handle the gas volume required to be flared. Most times, this flare networks are in close proximity but still have independent flare stacks, increasing risk to environment and cost on infrastructures. There is a need to integrate the flare networks in facilities within same area and through the application of Pinch Analysis concept, the resultant flare network can be optimized to give a system having optimal tail and header pipe sizes that will reduce cost and imp</span><span style="font-family:Verdana;">act on environment. In the light of the foregoing, the conce</span><span style="font-family:Verdana;">pt of pinch analy</span><span style="font-family:Verdana;">sis was used in debottlenecking integrate</span><span style="font-family:Verdana;">d gas flare networks from a flow station and a refinery in close proximity. Both flare networks were integrated and the resultant gas flare network was optimized to obtain the optimum pipe header and tail pipe sizes with the capacity to withstand the inventory from both facilities and satisfy the set constraints such as Mach number, noise, RhoV</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and backpressure. Mach number was set at 0.7 for tail pipes and 0.5 for header pipes, noise limit was not to exceed 80 dB upstream and 115 dB downstream the sources, RhoV</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> was limited to 6000 kg/m/s</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and the back</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">press</span><span style="font-family:Verdana;">ure requirement was source dependent respectively. The</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fir</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">e case scenario was considered, as it is the worst-case scenario in the studies. When pinch analysis was applied in debottlenecking the combined gas flare network, it g</span><span style="font-family:Verdana;">ave smaller tail and header pipe sizes which is more economical. A </span><span style="font-family:Verdana;">20% decrease in pipe sizes was recorded at the end of the study.展开更多
The objective of this paper is mainly to investigate the ventilated tail cavity flow of an underwater vehicle with focus on the gas leakage regime by experimental and numerical methods.A high-speed camera and pressure...The objective of this paper is mainly to investigate the ventilated tail cavity flow of an underwater vehicle with focus on the gas leakage regime by experimental and numerical methods.A high-speed camera and pressure measurement system are used to record the cavity flow patterns and pressure behavior,respectively.The numerical simulation is carried out with volume of fluid(VOF)model and Filter-based turbulence model(FBM).Good agreement can be obtained between the experimental and numerical results.There are three gas leakage types in the evolution of the intact tail cavity,i.e.,twin-vortex tube entrainment(TVTE),toroidal vortex shedding(TVS)and hybrid twin-vortex tube entrainment and toroidal vortex shedding(TVTE-TVS).With the increase of Fr,the unsteady behavior of the cavity with different gas leakage types becomes more apparent.The internal flow characteristics revealed three distinct regions including the ventilation influence region,the reverse flow region and the high shear flow region and have an important effect on the transition of gas leakage regime.展开更多
Facing the global warming trend,humanity has been paying more and more attention to the Carbon Capture,Utilization and Storage.Large amounts of CO_(2)is emitted with burning fossil fuel as well as by some special indu...Facing the global warming trend,humanity has been paying more and more attention to the Carbon Capture,Utilization and Storage.Large amounts of CO_(2)is emitted with burning fossil fuel as well as by some special industrial processes like the decomposition of calcium carbonate in a cement plant.The cement industry contributes about 7%of the total worldwide CO_(2)emissions and the CO_(2)concentration of flue gas of the cement kiln tail even exceeds 30%.Ionic liquid is considered to be an effective and potential material to capture CO_(2).In order to investigate the performance of ionic liquids for capturing CO_(2)from flue gas of the cement kiln tail,an experiment system was established and an ionic liquid,[APMIm][NTf_(2)](1-aminopropyl-3-imidazolium bis(trifluoromethylsulfonyl)imine),was tested using pure CO_(2)and simulated gas.The results showed that both physical and chemical absorption play roles while physical absorption dominates in the absorption process.Both the absorption capacity and rate decrease with raising the operating temperature.In the experiment with pure CO_(2),the absorption capacity is 0.296molCO_(2)⋅molIL−1 at 30℃ and 0.067molCO_(2)⋅molIL−1 at 70℃.Meanwhile,the ionic liquid can be regenerated for recycling without obvious changes of the absorption capacity.When the ionic liquid is used for flue gas of the cement kiln tail rather than pure CO_(2),a sharp decrease of the absorption capacity and rate was observed obviously.The absorption capacity at 30℃ dropped even to 0.038molCO_(2)⋅mol_(IL)^(−1),12.8%of that for pure CO_(2).Additionally,a natural desorption of CO_(2)from the ionic liquid was observed and affected the experimental results of the absorption capacity and the absorption-desorption rate to some extent.展开更多
Diesel engines have been widely used due to their high thermal efficiency, good environmental adaptability, wide power adjustment range, convenient maintenance and long service life. However, the application of diesel...Diesel engines have been widely used due to their high thermal efficiency, good environmental adaptability, wide power adjustment range, convenient maintenance and long service life. However, the application of diesel engines is also facing a serious problem;that is, the emission of nitrogen oxides and particulate matter is serious. For marine diesel engine emission requirements, MARPOL Convention Annex VI imposes strict restrictions on the emission of atmospheric pollutants. The limit emission of nitrogen oxides in the Tier III emission standards mandated by IMO is 3.4 g/kWh. Therefore, in order to meet the requirements of international conventions and countries and regions, it is necessary to control the emissions of diesel engines. The NOx in the exhaust gas is mostly a thermal type of nitrogen oxide which is produced under high temperature and high pressure conditions formed during compression and combustion strokes. The diesel engine relies on the compression energy of the mixture to ignite, and the good injection atomization effect is not achieved. The distribution of the detonation point is not uniform, and local high temperature points are generated in some areas, which increases the NOx formation. The main means of reducing NOx emissions are organic internal control and post-treatment. However, the use of internal control technology to reduce the internal temperature of the machine will deteriorate the fuel combustion conditions, so that the fuel cannot be completely burned, and the emissions of incomplete combustion products such as PM and CO increase. It is difficult to achieve NOx reduction by simply relying on the internal control technology, so it is necessary to use post-processing technology. The combined use of different emission reduction technologies is also a hot topic in emissions control research. The post-treatment methods for NOx emission reduction include direct catalytic decomposition, selective non-catalytic reduction, selective catalytic reduction, lean-burn adsorption catalytic reduction, and low-temperature plasma assisted technology. The current research and application schemes in the industry are SCR selectivity. Catalytic reduction and LNT lean combustion adsorption reduction. In this paper, the partial replacement of Ce by La is carried out to modify the Ce/Zr composite oxide. The mass fraction of La2O3 in the prepared La/Ce/Zr composite oxide was 5%, and the physicochemical properties of La/Ce/Zr composite oxide powder were analyzed by ICP, OSC, SEM and TPR techniques. The experiment found that: 1) La can refine the grain and inhibit the grain growth, so that the powder obtains a higher specific surface area and a smaller particle size distribution. 2) The addition of La reduces the sintering of cerium-zirconium and improves the heat aging resistance of the catalyst under the inhibition of high temperature. 3) After doping La, it enhances the migration of surface lattice oxygen and enhances the oxygen storage capacity;the addition of La enhances the NO adsorption capacity of cerium-zirconium and improves the catalytic activity of the catalyst. The light-off temperature and the highest activity temperature of PM decrease, and the reduction rate of No is 19.2%.展开更多
The mechanism of hydrogen sulfide(H_2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of s...The mechanism of hydrogen sulfide(H_2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds.Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H_2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction(BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction(TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H_2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer,indicating that the generation and accumulation of H_2S have the characteristics of either a self-generated source or a near-source.展开更多
In a modern day sulfur recovery unit(SRU),hydrogen sulfide(H_(2)S)is converted to elemental sulfur using a modified Claus unit.A process simulator called TSWEET has been used to consider the Claus process.The effect o...In a modern day sulfur recovery unit(SRU),hydrogen sulfide(H_(2)S)is converted to elemental sulfur using a modified Claus unit.A process simulator called TSWEET has been used to consider the Claus process.The effect of the H_(2)S concentration,the H_(2)S/CO_(2) ratio,the input airflow rate,the acid gasflow of the acid gas(AG)splitter and the temperature of the acid gas feed at three different oxygen concentrations(in the air input)on the main burner temperature have been studied.Also the effects of the tail gas ratio and the catalytic bed type on the sulfur recovery were studied.The bed temperatures were optimized in order to enhance the sulfur recovery for a given acid gas feed and air input.Initially when the fraction of AG splitterflow to the main burner was increased,the temperature of the main burner increased to a maximum but then decreased sharply when theflow fraction was further increased;this was true for all three concentrations of oxygen.However,if three other parameters(the concentration of H_(2)S,the ratio H_(2)S/CO_(2) and theflow rate of air)were increased,the temperature of the main burner increased monotonically.This increase had differ-ent slopes depending on the oxygen concentration in the input air.But,by increasing the temperature of the acid gas feed,the temperature of the main burner decreased.In general,the concentration of oxygen in the input air into the Claus unit had little effect on the temperature of the main burner(This is true for all parameters).The optimal catalytic bed temperature,tail gas ratio and type of catalytic bed were also determined and these conditions are a minimum temperature of 300°C,a ratio of 2.0 and a hydrolysing Claus bed.展开更多
China is currently the world's top coal consumer and the largest oil importer to sustain its rising economy and meet the mounting demand for transportation fuels.However,the increasing emissions due to the huge fo...China is currently the world's top coal consumer and the largest oil importer to sustain its rising economy and meet the mounting demand for transportation fuels.However,the increasing emissions due to the huge fossil fuels consumption,coupled with oil market instability,could derail China's economic growth and jeopardize its national energy security.To face such a hurdle,China has been aggressively supporting low-carbon businesses opportunuties over the past decade,has recently announced several plans to cap coal utilization,and is currently the biggest investor in clean energy technologies.Coal-toLiquid(CTL) is one of the most promising clean coal technologies,offering an ideal solution that can meet China's energy demands and environmental expectations.It is widely known that the Shenhua Group has pioneered and is currently leading the commercialization of the Direct Coal Liquefaction(DCL) process in China.This paper highlights a part of the joint research effort undertaken by the National Institute of Clean-and-LowCarbon Energy(NICE) and University of Pittsburgh in order to develop and commercialize the Indirect Coal Liquefaction(ICL) process.In this mission,NICE has built and operated an ICL plant including a large-scale(5.8-m ID and 30-m height) Slurry-Bubble-Column Reactor(SBCR)for Fischer-Tropsch synthesis using iron catalyst.The research,conducted at the University of Pittsburgh over the past few years,allowed building a user-friendly Simulator,based on a comprehensive SBCR model integrated with Aspen Plus and is validated using data from the NICE actual ICL plant.In this paper,the Simulator predictions of the performance of the NICE SBCR,operating with ironand cobalt catalysts under four different tail gas recycle strategies:(1) direct recycle;(2) using a Pressure Swing Adsorption(PSA) unit;(3) using a reformer;and(4) using a Chemical looping Combustion(CLC) process,are presented.It should be mentioned also that our joint research effort has laid the foundation for the design of a commercial-scale SBCR for producing one-million tons per annum of environmentally friendly and ultraclean(no sulfur,no nitrogen and virtually no aromatics) transportation fuels,which could greatly contribute to ensuring China's national energy security while curbing its lingering emission problems.展开更多
基金Supported by the National/qatural Science Foundation of China (20925623, 21006126), the Special Funds for Major State Basic Research Program of China (No. 2009CB219504), the Research Funds of China University of Petroleum, Beijing (BJBJRC-2010-01), and Beijing Nova Program (2010B069).
文摘In this work, the absorption-hydration hybrid method was used to recover (hydrogen + nitrogen) from (hydrogen + nitrogen + methane + argon) tail gas mixtures of synthetic ammonia plant through hydrate formation/dissociation. A high-pressure reactor with magnetic stirrer was used to study the separation efficiency. The in-fluences of the concentration of anti-agglomerant, temperature, pressure, initial gas-liquid volume ratio, and oil-water volume ratio on the separation efficiency were systematically investigated in the presence of tetrahydro-furan (THF). Anti-agglomerant was used to disperse hydrate particles into the condensate phase for water-in-oil emulsion system. Since nitrogen is the material for ammonia production, the objective production in our separation process is (hydrogen + nitrogen). Our experimental results show that by adopting appropriate operating conditions, high concentration of (hydrogen + nitrogen) can be obtained using the proposed technology based on forming hydrate.
基金Funded by the Innovation Fund for Technology Based Firms of China(No.07C26215301967, 2006YX22)
文摘The corrosion of materials in combustion chamber of yellow phosphor tall gas was investrgated. The results reveal that the corrosion behavior is different for different materials under actual work conditions.
文摘The preparation of immobilizing-catalysts for decomposing ozone by using dipping method was studied. XRD, XPS and TEM were used to characterize the catalysts. The three kinds of catalysts were selected preferentially, and their catalytic activities were investigated. The results showed that the catalyst with activated carbon dipping acetate(active components are Mn:Cu=3:2, active component proportion in catalyst is 15%, calcination temperature is 200℃) has the best catalytic activity for ozone decomposing. One gram of catalyst can decompose 17.6 g ozone at initial ozone concentration of 2.5 g/m 3 and the residence time in reactor of 0.1 s. The experimental results also indicated that humidity of reaction system had negative effect on catalytic activity.
文摘A numerical calculation of a 3000MWt MHD steam combined cycle system with tail gasification is described . The research scheme has been set up and the parameters of this system have been designed. Then the efficiency of the combined cycle system has been calculated which is up to 53.9%.
基金the sponsorship of National Natural Science Foundation of China(21878099)Science and Technology Commission of Shanghai Municipality(19DZ1208000)。
文摘In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient.
文摘The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.
文摘Producing methanol from coke oven gas(COG) is one of the important applications of COG. Removal of sulfur from COG is a key step of this process. Conversion and reaction kinetics over a commercial Fe-Mo/Al2O3 catalyst(T-202) were studied in a continuous flow fixed bed reactor under pressures of 1.6-2.8 MPa, space time of 1.32-3.55 s and temperatures of 240-360 °C. Though the COG contains about 0.6 mol/mol H2, hydrogenation of CO and CO2 is not significant on this catalyst. The conversions of unsaturated hydrocarbons depend on their molecular structures. Diolefins and alkynes can be completely hydrogenated even at relatively low temperature and pressure. Olefins, in contrast, can only be progressively hydrogenated with increasing temperature and pressure. The hydrodesulfurization(HDS) of CS2 on this catalyst is easy. Complete conversion of CS2 was observed in the whole range of the conditions used in this work. The original COS in the COG can also be easily converted to a low level. However, its complete HDS is difficult due to the relatively high concentration of CO in the COG and due to the limitation of thermodynamics. H2 S can react with unsaturated hydrocarbons to form ethyl mercaptan and thiophene, which are then progressively hydrodesulfurized with increasing temperature and pressure. Based on the experimental observations, reaction kinetic models for the conversion of ethylene and sulfur-containing compounds were proposed; the values of the parameters in the models were obtained by regression of the experimental data.
文摘Gas flaring is concerned with the combustion of lighter ends of hydrocarbon mostly produced in association with crude oil. Flare networks are designed to handle the gas volume required to be flared. Most times, this flare networks are in close proximity but still have independent flare stacks, increasing risk to environment and cost on infrastructures. There is a need to integrate the flare networks in facilities within same area and through the application of Pinch Analysis concept, the resultant flare network can be optimized to give a system having optimal tail and header pipe sizes that will reduce cost and imp</span><span style="font-family:Verdana;">act on environment. In the light of the foregoing, the conce</span><span style="font-family:Verdana;">pt of pinch analy</span><span style="font-family:Verdana;">sis was used in debottlenecking integrate</span><span style="font-family:Verdana;">d gas flare networks from a flow station and a refinery in close proximity. Both flare networks were integrated and the resultant gas flare network was optimized to obtain the optimum pipe header and tail pipe sizes with the capacity to withstand the inventory from both facilities and satisfy the set constraints such as Mach number, noise, RhoV</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and backpressure. Mach number was set at 0.7 for tail pipes and 0.5 for header pipes, noise limit was not to exceed 80 dB upstream and 115 dB downstream the sources, RhoV</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> was limited to 6000 kg/m/s</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> and the back</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">press</span><span style="font-family:Verdana;">ure requirement was source dependent respectively. The</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">fir</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">e case scenario was considered, as it is the worst-case scenario in the studies. When pinch analysis was applied in debottlenecking the combined gas flare network, it g</span><span style="font-family:Verdana;">ave smaller tail and header pipe sizes which is more economical. A </span><span style="font-family:Verdana;">20% decrease in pipe sizes was recorded at the end of the study.
基金supported by the National Natural Science Foundation of China(Grant No.U20B2005).
文摘The objective of this paper is mainly to investigate the ventilated tail cavity flow of an underwater vehicle with focus on the gas leakage regime by experimental and numerical methods.A high-speed camera and pressure measurement system are used to record the cavity flow patterns and pressure behavior,respectively.The numerical simulation is carried out with volume of fluid(VOF)model and Filter-based turbulence model(FBM).Good agreement can be obtained between the experimental and numerical results.There are three gas leakage types in the evolution of the intact tail cavity,i.e.,twin-vortex tube entrainment(TVTE),toroidal vortex shedding(TVS)and hybrid twin-vortex tube entrainment and toroidal vortex shedding(TVTE-TVS).With the increase of Fr,the unsteady behavior of the cavity with different gas leakage types becomes more apparent.The internal flow characteristics revealed three distinct regions including the ventilation influence region,the reverse flow region and the high shear flow region and have an important effect on the transition of gas leakage regime.
基金Project 2016YFB0601504 supported by National Key R&D Program of China is gratefully acknowledged.The authors are also grateful for the help about the NMR test from Dr.WAN Qiang in Institute of Chemistry,Chinese Academy of Sciences.
文摘Facing the global warming trend,humanity has been paying more and more attention to the Carbon Capture,Utilization and Storage.Large amounts of CO_(2)is emitted with burning fossil fuel as well as by some special industrial processes like the decomposition of calcium carbonate in a cement plant.The cement industry contributes about 7%of the total worldwide CO_(2)emissions and the CO_(2)concentration of flue gas of the cement kiln tail even exceeds 30%.Ionic liquid is considered to be an effective and potential material to capture CO_(2).In order to investigate the performance of ionic liquids for capturing CO_(2)from flue gas of the cement kiln tail,an experiment system was established and an ionic liquid,[APMIm][NTf_(2)](1-aminopropyl-3-imidazolium bis(trifluoromethylsulfonyl)imine),was tested using pure CO_(2)and simulated gas.The results showed that both physical and chemical absorption play roles while physical absorption dominates in the absorption process.Both the absorption capacity and rate decrease with raising the operating temperature.In the experiment with pure CO_(2),the absorption capacity is 0.296molCO_(2)⋅molIL−1 at 30℃ and 0.067molCO_(2)⋅molIL−1 at 70℃.Meanwhile,the ionic liquid can be regenerated for recycling without obvious changes of the absorption capacity.When the ionic liquid is used for flue gas of the cement kiln tail rather than pure CO_(2),a sharp decrease of the absorption capacity and rate was observed obviously.The absorption capacity at 30℃ dropped even to 0.038molCO_(2)⋅mol_(IL)^(−1),12.8%of that for pure CO_(2).Additionally,a natural desorption of CO_(2)from the ionic liquid was observed and affected the experimental results of the absorption capacity and the absorption-desorption rate to some extent.
文摘Diesel engines have been widely used due to their high thermal efficiency, good environmental adaptability, wide power adjustment range, convenient maintenance and long service life. However, the application of diesel engines is also facing a serious problem;that is, the emission of nitrogen oxides and particulate matter is serious. For marine diesel engine emission requirements, MARPOL Convention Annex VI imposes strict restrictions on the emission of atmospheric pollutants. The limit emission of nitrogen oxides in the Tier III emission standards mandated by IMO is 3.4 g/kWh. Therefore, in order to meet the requirements of international conventions and countries and regions, it is necessary to control the emissions of diesel engines. The NOx in the exhaust gas is mostly a thermal type of nitrogen oxide which is produced under high temperature and high pressure conditions formed during compression and combustion strokes. The diesel engine relies on the compression energy of the mixture to ignite, and the good injection atomization effect is not achieved. The distribution of the detonation point is not uniform, and local high temperature points are generated in some areas, which increases the NOx formation. The main means of reducing NOx emissions are organic internal control and post-treatment. However, the use of internal control technology to reduce the internal temperature of the machine will deteriorate the fuel combustion conditions, so that the fuel cannot be completely burned, and the emissions of incomplete combustion products such as PM and CO increase. It is difficult to achieve NOx reduction by simply relying on the internal control technology, so it is necessary to use post-processing technology. The combined use of different emission reduction technologies is also a hot topic in emissions control research. The post-treatment methods for NOx emission reduction include direct catalytic decomposition, selective non-catalytic reduction, selective catalytic reduction, lean-burn adsorption catalytic reduction, and low-temperature plasma assisted technology. The current research and application schemes in the industry are SCR selectivity. Catalytic reduction and LNT lean combustion adsorption reduction. In this paper, the partial replacement of Ce by La is carried out to modify the Ce/Zr composite oxide. The mass fraction of La2O3 in the prepared La/Ce/Zr composite oxide was 5%, and the physicochemical properties of La/Ce/Zr composite oxide powder were analyzed by ICP, OSC, SEM and TPR techniques. The experiment found that: 1) La can refine the grain and inhibit the grain growth, so that the powder obtains a higher specific surface area and a smaller particle size distribution. 2) The addition of La reduces the sintering of cerium-zirconium and improves the heat aging resistance of the catalyst under the inhibition of high temperature. 3) After doping La, it enhances the migration of surface lattice oxygen and enhances the oxygen storage capacity;the addition of La enhances the NO adsorption capacity of cerium-zirconium and improves the catalytic activity of the catalyst. The light-off temperature and the highest activity temperature of PM decrease, and the reduction rate of No is 19.2%.
文摘The mechanism of hydrogen sulfide(H_2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds.Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H_2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction(BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction(TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H_2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer,indicating that the generation and accumulation of H_2S have the characteristics of either a self-generated source or a near-source.
基金the National Iranian Gas Company(NIGC)for their financial support to this study.
文摘In a modern day sulfur recovery unit(SRU),hydrogen sulfide(H_(2)S)is converted to elemental sulfur using a modified Claus unit.A process simulator called TSWEET has been used to consider the Claus process.The effect of the H_(2)S concentration,the H_(2)S/CO_(2) ratio,the input airflow rate,the acid gasflow of the acid gas(AG)splitter and the temperature of the acid gas feed at three different oxygen concentrations(in the air input)on the main burner temperature have been studied.Also the effects of the tail gas ratio and the catalytic bed type on the sulfur recovery were studied.The bed temperatures were optimized in order to enhance the sulfur recovery for a given acid gas feed and air input.Initially when the fraction of AG splitterflow to the main burner was increased,the temperature of the main burner increased to a maximum but then decreased sharply when theflow fraction was further increased;this was true for all three concentrations of oxygen.However,if three other parameters(the concentration of H_(2)S,the ratio H_(2)S/CO_(2) and theflow rate of air)were increased,the temperature of the main burner increased monotonically.This increase had differ-ent slopes depending on the oxygen concentration in the input air.But,by increasing the temperature of the acid gas feed,the temperature of the main burner decreased.In general,the concentration of oxygen in the input air into the Claus unit had little effect on the temperature of the main burner(This is true for all parameters).The optimal catalytic bed temperature,tail gas ratio and type of catalytic bed were also determined and these conditions are a minimum temperature of 300°C,a ratio of 2.0 and a hydrolysing Claus bed.
基金the National Institute of Clean-and-Low-Carbon Energy (NICE),China,for their financial support of this research
文摘China is currently the world's top coal consumer and the largest oil importer to sustain its rising economy and meet the mounting demand for transportation fuels.However,the increasing emissions due to the huge fossil fuels consumption,coupled with oil market instability,could derail China's economic growth and jeopardize its national energy security.To face such a hurdle,China has been aggressively supporting low-carbon businesses opportunuties over the past decade,has recently announced several plans to cap coal utilization,and is currently the biggest investor in clean energy technologies.Coal-toLiquid(CTL) is one of the most promising clean coal technologies,offering an ideal solution that can meet China's energy demands and environmental expectations.It is widely known that the Shenhua Group has pioneered and is currently leading the commercialization of the Direct Coal Liquefaction(DCL) process in China.This paper highlights a part of the joint research effort undertaken by the National Institute of Clean-and-LowCarbon Energy(NICE) and University of Pittsburgh in order to develop and commercialize the Indirect Coal Liquefaction(ICL) process.In this mission,NICE has built and operated an ICL plant including a large-scale(5.8-m ID and 30-m height) Slurry-Bubble-Column Reactor(SBCR)for Fischer-Tropsch synthesis using iron catalyst.The research,conducted at the University of Pittsburgh over the past few years,allowed building a user-friendly Simulator,based on a comprehensive SBCR model integrated with Aspen Plus and is validated using data from the NICE actual ICL plant.In this paper,the Simulator predictions of the performance of the NICE SBCR,operating with ironand cobalt catalysts under four different tail gas recycle strategies:(1) direct recycle;(2) using a Pressure Swing Adsorption(PSA) unit;(3) using a reformer;and(4) using a Chemical looping Combustion(CLC) process,are presented.It should be mentioned also that our joint research effort has laid the foundation for the design of a commercial-scale SBCR for producing one-million tons per annum of environmentally friendly and ultraclean(no sulfur,no nitrogen and virtually no aromatics) transportation fuels,which could greatly contribute to ensuring China's national energy security while curbing its lingering emission problems.