As an excellent chemical fertilizer,Potassium Sulphate(K2SO4)could provide both potassium and sulfur elements for crops.However,it is well known that potassium resource is very poor in China.To understand the Crystall...As an excellent chemical fertilizer,Potassium Sulphate(K2SO4)could provide both potassium and sulfur elements for crops.However,it is well known that potassium resource is very poor in China.To understand the Crystallization Kinetics(CK)of K2SO4could be conducive to utilize the limited potassium resource,promote the yield and purity of K2SO4.In this study saturated solution of potassium sulphate was prepared according to the phase diagram of Mg2+、展开更多
As a natural mineral,Potash Magnesium Sulphate fertilizer has a quite high nutrient utilization rate without affecting soil p H in long time running related to Potassium Sulphate.And to displace Potassium Sulphate wit...As a natural mineral,Potash Magnesium Sulphate fertilizer has a quite high nutrient utilization rate without affecting soil p H in long time running related to Potassium Sulphate.And to displace Potassium Sulphate with Potash展开更多
Background: One of the deadliest parasite infections is malaria. A combination of quinine sulphate and doxycycline is another therapeutic option for malaria that is resistant to chloroquine and is anticipated to be ab...Background: One of the deadliest parasite infections is malaria. A combination of quinine sulphate and doxycycline is another therapeutic option for malaria that is resistant to chloroquine and is anticipated to be able to both combat the issue of anti-malarial medication resistance as well as the compliance to malaria therapy that is still raging in certain locations of Indonesia. Aim: This study will focus on evaluating the possibility of interaction between quinine sulphate and doxycycline followed by formulating the fixed-dose combination of both active pharmaceutical ingredients. Method: The study was designed as a laboratory experiment and applied some examinations. The examination from the organoleptic test of active pharmaceutical ingredients powder, crystallography analysis, and physical analysis of fixed-dose tablet including hardness, friability, and disintegration time testing. Result: The crystallography study reported there was no physical interaction found between quinine sulphate and doxycycline. The formula found excellent tablet printability with a composition of Quinine sulphate and doxycycline (Qidox). Conclusion: quinine sulphate with doxycycline can be combined into one tablet as Fixed-Dose Combination (FDC).展开更多
Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal rea...Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.展开更多
The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative ...The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative Pb-C composites consisting of single atom Pb and carbon-encapsulated PbO nanoparticles were prepared by freeze-drying technique and pyrolytic reduction to address above obstacles.The innovative use of Pb^(2+)to cross-link sodium alginate enabled a uniform distribution of Pb in the composites,generating Pb-C-PbO three-phase heterostructure.Experimental analysis and theoretical calculations revealed the synergistic interactions between single-atom Pb and PbO nanoparticles in suppressing parasitic hydrogen evolution and promoting the adsorption of Pb atoms.The presence of monatomic Pb and PbO enhanced the affinity of the composites for the negative active materials and facilitated the transformation of the active materials from bulk into spherical shapes to enhance the specific surface area,thereby counteracting sulphation.Through the coordinated integration of various functionalities offered by Pb@C-x,the cycle life of the battery at HRPSoC reaches 7025 cycles,which is two times for LCB with pure carbon materials.Additionally,the discharge capacity increased from 3.52 to 3.79 Ah.This study provides substantial insights into the construction of Pb-C composites for LCBs to inhibit negative sulphation and hydrogen evolution.展开更多
Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community...Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis.展开更多
The corrosion behaviours of die-cast AZ91D magnesium alloys were investigated in 0.1 mol/L sodium sulphate (Na 2 SO 4 ) solutions with different pH values. The corrosion rates, morphologies, and compositions of the ...The corrosion behaviours of die-cast AZ91D magnesium alloys were investigated in 0.1 mol/L sodium sulphate (Na 2 SO 4 ) solutions with different pH values. The corrosion rates, morphologies, and compositions of the corrosion products were studied by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffractometry (XRD). The results indicate that the order of corrosion rates in Na 2 SO 4 solutions with various pH values is pH 2pH 4pH 7pH 9pH 12. The corrosion rates in acidic solutions are higher than those in alkaline solutions, and the corrosion products are mainly magnesium hydroxide (Mg(OH) 2 ) and hydrated sulphate pickeringite (MgAl 2 (SO 4 ) 4 ·22H 2 O). The results also indicate that the solution pH can influence the corrosion rate and morphology of corrosion products. Chloride ions and sulphate ions have different pitting initiation time.展开更多
The pharmacokinetics of morphine sulphate was studied in 10 Chinese healthy volunteers after a single oral dose. Blood samples were collected before and after administration of controlled release tablets (CRMS, 30 mg)...The pharmacokinetics of morphine sulphate was studied in 10 Chinese healthy volunteers after a single oral dose. Blood samples were collected before and after administration of controlled release tablets (CRMS, 30 mg) and immediate release tablets (IRMS, 20 mg). The plasma concentration of morphine was determined by GC MS. The pharmacokinetic parameters of controlled release tablets and immediate release tablets were calculated∶ C max was 19.38±3.80 and 21.27±6.21 ng/ml, t max was 2.36 ±0.37 h and 0.56±0.16 h, t 1/2β was 3.53±0.87 and 3.03±0.74 h, AUC was 145.15±17.65 and 93.08±16.65 ng/ml, respectively. The steady state plasma concentration of morphine sulphate in cancer patients after multiple doses was achieved, C max of CRMS and IRMS was 27.43±0.33 ng/ml and 22.68±0.16 ng/ml, C min of CRMS and IRMS was 19.45±1.44 ng/ml and 18.14±0.49 ng/ml, respectively.展开更多
AIM: To study whether matrix metalloproteinase-9 (MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice.METHODS: MMP-9-deficient and wild-type (wt) mice were given 5...AIM: To study whether matrix metalloproteinase-9 (MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice.METHODS: MMP-9-deficient and wild-type (wt) mice were given 5% DSS in drinking water for 5 d followed by recovery up to 7 d. On d 5 and 12 after induction of colitis, gelatinases, MMP-2 and MMP-9, were measured in homogenates of colonic tissue by zymography and Western blot, whereas tissue inhibitor of metalloproteinases (TIMPs) were measured by reverse zymography. The gelatinolytic activity was also determined in supernatants of polymorphonuclear leukocytes (PMN) isolated from mice blood. Moreover, intestinal epithelial cells were stimulated with TNF-α to study whether these cells were able to produce MMPs. Finally, colonic mucosal lesions were measured by microscopic examination. RESULTS: On d 5 of colitis, the activity of MMP-9 was increased in homogenates of colonic tissues (0.24 ± 0.1 vs 21.3 ± 6.4, P < 0.05) and PMN from peripheral blood in wt (0.5 ± 0.1 vs 10.4 ± 0.7, P < 0.05), but not in MMP-9-deficient animals. The MMP-9 activity was also up-regulated by TNF-α in epithelial intestinal cells (2.5 ± 0.5 vs 14.7 ± 3.0, P < 0.05). Although colitis also led to increase of TIMP-1 activity, the MMP-9/TIMP-1 balance remained elevated. Finally, in the MMP-9-deficient colitic mice both the extent and severity of intestinal epithelialinjury were significantly attenuated when compared with wt mice. CONCLUSION: We conclude that DSS induced colitis is markedly attenuated in animals lacking MMP-9. This suggests that intestinal injury induced by DSS is modu-lated by MMP-9 and that inhibition of this gelatinase may reduce inflammation.展开更多
Valuable metal extraction technology from thermal power plant fly ash is limited.In the present study,aluminium is extracted from fly ash as highly pure aluminium sulphate(>99.0%)by leaching with sulphuric acid,fol...Valuable metal extraction technology from thermal power plant fly ash is limited.In the present study,aluminium is extracted from fly ash as highly pure aluminium sulphate(>99.0%)by leaching with sulphuric acid,followed by pre-concentration and successive crystallization.Two types of fly ashes from different sources,i.e.,Talcher Thermal Power Station(TTPS)and Vedanta Aluminium Company Limited(VAL)were chosen for comparative study on the extraction of aluminium as aluminium sulphate.The product is characterized by powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR)and thermogravimetric analysis(TGA).Purity of aluminium sulphate was also investigated by inductively coupled plasma?optical emission spectrometry(ICP?OES).The extraction efficiency of aluminium depends on the varied solid-to-liquid ratio(fly ash:18mol/L H2SO4,g/mL)and particle size of fly ashes.Physico-chemical analysis indicates that the obtained product is Al2(SO4)3·18H2O,having low iron content(0.08%).展开更多
The Carboniferous system in the Xiaohaizi area, Bachu County, Xinjiang Uygur Autonomous Region, composed of typical mixed terrigenous clastic, carbonate and sulphate sediments, was mainly deposited in the tidal flat a...The Carboniferous system in the Xiaohaizi area, Bachu County, Xinjiang Uygur Autonomous Region, composed of typical mixed terrigenous clastic, carbonate and sulphate sediments, was mainly deposited in the tidal flat and lagoon environments. The mixed sediments occur as the following eleven types: 1. limestone intercalated with siltstone; 2. interbeds of shale and limestone; 3. gypsolyte interbedded with limestone; 4. gypsolyte intercalated with siltstone; 5. gypsolyte interbedded with shale; 6. gypsolyte intercalated with siltstone, limestone and dolomite; 7. siltstone interbedded with gypsolyte and limestone; 8. terrigenous detritus scattered in carbonate matrix; 9. carbonate as cement in clastic rocks; 10. mixed sediments of carbonate and terrigenous mud; 11. mixed sediments of carbonate grains with terrigenous sand. Based on the analysis of the dynamic mechanism of mixed sediments, it is believed that these types of mixed sediments in the study area were controlled by climate, sea level change and sources of sediments.展开更多
Molecular dynamics simulation has been performed to simulate the interaction between PESA and the (001) face of anhydrite crystal CaSO4 at different temperatures with the presence of various number of H2O molecules....Molecular dynamics simulation has been performed to simulate the interaction between PESA and the (001) face of anhydrite crystal CaSO4 at different temperatures with the presence of various number of H2O molecules. The results show that PESA can effectively prevent the growth of CaSO4 scale at 323-343 K. At the same temperature, the binding energy between PESA and the (001) face of CaSO4 for systems with various number of H2O has the order of E-bind(OH2O)〉Ebind(200-400H2O)〉E, bind(lOOH2O). For the same system at different temperatures the binding energies are close and are mainly contributed from the Coulomb interaction, including ionic bonds. The bonds are formed between the calcium atoms of anhydrite scale crystal and the Hydrogen bonds are formed between the O oxygen atoms of the carboxyl group of PESA. atoms of the carboxyl group of PESA and the H atoms of H2O. van der Waals interaction is conducive to the stability of the system of PESA, H2O, and CaSO4. The radial distribution functions of O(carbonyl of PESA)-H(H2O), O(CaSO4)-H(H2O), and O(CaSO4)-H(PESA) imply that solvents have effects on the anti-scale performance of PESA to CaSO4.展开更多
The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-t...The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.展开更多
Lime-fly ash stabilized loess has a poor early strength,which results in a later traffic opening time when it is used as road-base materials.Consideration of the significant early strength characteristics of sulphate ...Lime-fly ash stabilized loess has a poor early strength,which results in a later traffic opening time when it is used as road-base materials.Consideration of the significant early strength characteristics of sulphate aluminum cement(SAC),it is always added into the lime-fly ash mixtures to improve the early strength of stabilized loess.However,there is a scarcity of research on the mechanical behavior of lime-fly ash-SAC stabilized loess and there is a lack of quantitative evaluation of loess stabilized with binder materials.This research explored the effects of the amount of binder materials,curing time and porosity on the unconfined compressive strength(UCS),splitting tensile strength(STS),cohesion(c)and friction angle(φ)of lime-fly ash-SAC stabilized loess by a series of unconfined compressive tests(UCT)and splitting tensile tests(STT).The results indicate that an increase in curing time and a decrease in porosity lead to a continuous increase in the UCS and STS for lime-fly ash-SAC stabilized loess.The addition of SAC has a prominent enhancement in the early strength of lime-fly ash-SAC stabilized loess.When the curing time,porosity,and binder content were constant,the UCS and STS increase with increasing SAC content;For a stabilized loess with 30%binder content and 5%SAC content after 1 day of curing,the UCS was greater than 0.7 MPa,which meets the requirement of opening traffic,so lime-fly ash-SAC stabilized loess could be used as an excellent maintenance material for road-base;In accordance with the analysis of testing data,empirical relationships between the UCS and STS of lime-fly-SAC stabilized loess and key effect factors(binder materials content,curing time and porosity)were developed,which can provide references for reasonably selecting the amount of binder materials,compaction degree and curing period to meet the required strength of practical engineering.Finally,based on the Mohr-Coulomb theory and the above empirical relationships,a simpler method for calculating the c andφof stabilized loess was proposed,with which,the shear strength parameters can be determined only by UCT or STT.展开更多
In this paper,the combined addition of copper or iron and sulphate ions onto TiO_(2) prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion.A wide structural and morphological charact...In this paper,the combined addition of copper or iron and sulphate ions onto TiO_(2) prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion.A wide structural and morphological characterization of the different photocatalysts was performed by X-ray diffraction(XRD),N_(2)-physisorption for BET surface area measurements,scanning and transmission electronic microscopies(SEM and TEM),UV-Vis diffuse spectroscopy(DRS)and X-ray photoelectron spectroscopy(XPS),in order to correlate the physico-chemical properties of the materials to their photocatalytic efficiencies for formic acid oxidation.Results have shown important differences among the catalysts depending on the metal added.Sulphated TiO_(2)/Cu(1%Cu)was the best photocatalyst obtaining about 100% formic acid conversion in only 5 min.The appropriate physico-chemical features of this photocatalyst,given by the addition of combined copper and sulphate ions,explain its excellence in photocatalytic reaction.展开更多
Biogas production generates digested slurry as a byproduct. It can be used as a fertilizer especially after its conversion into digested liquid. A pot based study was conducted in order to evaluate the effect of the a...Biogas production generates digested slurry as a byproduct. It can be used as a fertilizer especially after its conversion into digested liquid. A pot based study was conducted in order to evaluate the effect of the application of digested liquid on CH4 and N2O flux, and plant biomass in paddy. Analysis revealed that digested liquid treated soils released more CH4 compared to ammonium sulphate and the control. Ammonium sulphate treated soil emitted the highest N20 whereas digested liquid application decreased its emission significantly. Further, the cumulative emission over 101 d of the experiment was found to be higher for CHa (16.9 to 29.9 g m^-2) compared to N20 (-49.3 to 18.9 mg m^-2) for all treatments. Digested liquid application had positive impact on plant variables such as panicle number and weight of panicles. This study suggests that digested liquid application significantly decrease N20 emission and increase CH4 emission possibly due to affecting the availability of organic C in the soil to microbial activity for methanogenesis. Another possibility for enhancing CH4 emission by following biogas digested liquid could be attributed to the increase in plant biomass.展开更多
A new debenzylation of benzyl esters by silica-supported sodium hydrogen sulfate is described. The debenzylation could be achieved selectively and efficiently in good to excellent yields without affecting sensitive fu...A new debenzylation of benzyl esters by silica-supported sodium hydrogen sulfate is described. The debenzylation could be achieved selectively and efficiently in good to excellent yields without affecting sensitive functional groups such as nitro, unsaturated bonds, and ethyl ester.展开更多
BACKGROUND Anti-tumor necrosis factor α(TNFα) represents the best therapeutic option to induce mucosal healing and clinical remission in patients with moderate-severe ulcerative colitis. On the other side gut microb...BACKGROUND Anti-tumor necrosis factor α(TNFα) represents the best therapeutic option to induce mucosal healing and clinical remission in patients with moderate-severe ulcerative colitis. On the other side gut microbiota plays a crucial role in pathogenesis of ulcerative colitis but few information exists on how microbiota changes following anti-TNFα therapy and on microbiota role in mucosal healing.AIM To elucidate whether gut microbiota and immune system changes appear following anti TNFα therapy during dextran sulfate sodium(DSS) colitis.METHODS Eighty C57 BL/6 mice were divided into four groups: "No DSS", "No DSS + antiTNFα", "DSS" and "DSS + anti-TNFα". "DSS" and "DSS + anti-TNFα" were treated for 5 d with 3% DSS. At day 3, mice whithin "No DSS+anti-TNFα" and"DSS+anti-TNFα" group received 5 mg/kg of an anti-TNFα agent. Forty mice were sacrificed at day 5, forty at day 12, after one week of recovery post DSS. The severity of colitis was assessed by a clinical score(Disease Activity Index), colon length and histology. Bacteria such as Bacteroides, Clostridiaceae, Enterococcaceae and Fecalibacterium prausnitzii(F. prausnitzii) were evaluated by quantitative PCR.Type 1 helper T lymphocytes(Th1), type 17 helper T lymphocytes(Th17) and CD4+ regulatory T lymphocytes(Treg) distributions in the mesenteric lymph node(MLN) were studied by flow cytometry.RESULTS Bacteria associated with a healthy state(i.e., such as Bacteroides, Clostridiaceae and F. prausnitzii) decreased during colitis and increased in course of anti-TNFαtreatment. Conversely, microorganisms belonging to Enterococcaceae genera,which are linked to inflammatory processes, showed an opposite trend.Furthermore, in colitic mice treated with anti-TNFα microbial changes were associated with an initial increase(day 5 of the colitis) in Treg cells and a consequent decrease(day 12 post DSS) in Th1 and Th17 frequency cells. Healthy mice treated with anti-TNFα showed the same histological, microbial and immune features of untreated colitic mice. "No DSS + anti-TNFα" group showed a lymphomononuclear infiltrate both at 5 th and 12 th d at hematoxylin and eosin staining, an increase of in Th1 and Th17 frequency at day 12, an increase of Enterococcaceae at day 5, a decrease of Bacteroides and Clostridiaceae at day 12.CONCLUSION Anti-TNFα treatment in experimental model of colitis improves disease activity but it is associated to an increase in Th17 pathway together with gut microbiota alteration.展开更多
The assessment of magnesium sulphate attack on concretes containing rice husk ash (RHA, 20wt% of the cementitious materials) with various average particle sizes was investigated. The total cementitious materials wer...The assessment of magnesium sulphate attack on concretes containing rice husk ash (RHA, 20wt% of the cementitious materials) with various average particle sizes was investigated. The total cementitious materials were 390 kg and the water-to-binder ratio (W/B) was 0.53 for all mixtures. Specimens were initially cured in water for 7 d and then immersed in the 3wt% magnesium sulphate solution for up to 111 d of exposure. The specimens were subjected to drying-wetting cycles to accelerate sulphate attack. In addition to the visual monitoring of the specimens, the concrete specimens were subsequently tested for compressive strength, dynamic modulus of elasticity, and length and mass changes. The results show that the specimens exposed to sulphate attack exhibit higher strength and dynamic modulus than those kept in water. The length change is negligible and can be attributed to the normal swelling of concrete. On the other hand, concretes suffers mass loss and surface spalling and softening; the fine RHA-concrete results in a better resistance. For the accelerated sulphate attack method used in this study, mass change and visual monitoring are recommended for assessing the deterioration degree and the effectiveness of supplementary cementitious materials to resist sulphate attack.展开更多
Potassium(K),an important nutrient element,can improve the stress resistance/tolerance of crops.The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nemat...Potassium(K),an important nutrient element,can improve the stress resistance/tolerance of crops.The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.However,data on K_(2)SO_(4)induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.In this work,K_(2)SO_(4)treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites,such an effect is achieved by rapidly priming hydrogen peroxide(H_(2)O_(2))accumulation and increasing callose deposition.Meanwhile,galls and nematodes in rice roots were more in the potassium channel OsAKT11 and transporter OsHAK5 gene-deficient plants than in wild-type,while the K_(2)SO_(4)-induced resistance showed weaker in the defective plants.In addition,during the process of nematode infection,the expression of jasmonic acid(JA)/ethylene(ET)/brassinolide(BR)signaling pathway-related genes and pathogenesis-related(PR)genes OsPR1 a/OsPR1 b was up-regulated in rice after K_(2)SO_(4)treatment.In conclusion,K_(2)SO_(4)induced rice resistance against M.graminicola.The mechanism of inducing resistance was to prime the basal defense and required the participation of the K^(+)channel and transporter in rice.These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.展开更多
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)+3 种基金Tianjin Science and technology support program (12ZCDZSF06900)Tianjin University of Science and Technology fund for scientific research (20120119)Tianjin education commission program (20130509)Research fund for the doctoral program of higher education of China(20131208120001)
文摘As an excellent chemical fertilizer,Potassium Sulphate(K2SO4)could provide both potassium and sulfur elements for crops.However,it is well known that potassium resource is very poor in China.To understand the Crystallization Kinetics(CK)of K2SO4could be conducive to utilize the limited potassium resource,promote the yield and purity of K2SO4.In this study saturated solution of potassium sulphate was prepared according to the phase diagram of Mg2+、
基金financial support of National Nature Science Foundation (21376178)TIDA giant growth plan (2011-XJR13020)+3 种基金Tianjin Science and technology support program (12ZCDZSF06900)Tianjin University of Science and Technology fund for scientific research (20120119)Tianjin education commission program (20130509)Research fund for the doctoral program of higher education of China(20131208120001)
文摘As a natural mineral,Potash Magnesium Sulphate fertilizer has a quite high nutrient utilization rate without affecting soil p H in long time running related to Potassium Sulphate.And to displace Potassium Sulphate with Potash
文摘Background: One of the deadliest parasite infections is malaria. A combination of quinine sulphate and doxycycline is another therapeutic option for malaria that is resistant to chloroquine and is anticipated to be able to both combat the issue of anti-malarial medication resistance as well as the compliance to malaria therapy that is still raging in certain locations of Indonesia. Aim: This study will focus on evaluating the possibility of interaction between quinine sulphate and doxycycline followed by formulating the fixed-dose combination of both active pharmaceutical ingredients. Method: The study was designed as a laboratory experiment and applied some examinations. The examination from the organoleptic test of active pharmaceutical ingredients powder, crystallography analysis, and physical analysis of fixed-dose tablet including hardness, friability, and disintegration time testing. Result: The crystallography study reported there was no physical interaction found between quinine sulphate and doxycycline. The formula found excellent tablet printability with a composition of Quinine sulphate and doxycycline (Qidox). Conclusion: quinine sulphate with doxycycline can be combined into one tablet as Fixed-Dose Combination (FDC).
基金Project(2013A090100013)supported by the Special Project on the Integration of Industry,Education and Research of Guangdong Province,ChinaProject(201407300993)supported by the High Technology Research and Development Program of Xinjiang Uygur Autonomous Region,China
文摘Magnetite concentrate was recovered from ferrous sulphate by co-precipitation and magnetic separation. In co-precipitation process, the effects of reaction conditions on iron recovery were studied, and the optimal reaction parameters are proposed as follows: n(CaO)/n(Fe2+) 1.4:1, reaction temperature 80 ℃, ferrous ion concentration 0.4 mol/L, and the final mole ratio of Fe3+ to FJ+ in the reaction solution 1.9-2.1. In magnetic separation process, the effects of milling time and magnetic induction intensity on iron recovery were investigated. Wet milling played an important part in breaking the encapsulated magnetic phases. The results showed that the mixed product was wet-milled for 20 min before magnetic separation, the grade and recovery rate of iron in magnetite concentrate were increased from 51.41% and 84.15% to 62.05% and 85.35%, respectively.
基金supported by the National Natural Science Foundation of China (52064028,22002054)Yunnan Fundamental Research Projects (202401AT070334,202101AS070013)Yunnan Provincial Major Science and Technology Special Plan Projects (202202AF080002)。
文摘The mitigation of sulphation and parasitic hydrogen evolution is considered as prominent research emphasis for the development of lead-carbon batteries(LCBs)in large-scale energy storage applications.Here,cooperative Pb-C composites consisting of single atom Pb and carbon-encapsulated PbO nanoparticles were prepared by freeze-drying technique and pyrolytic reduction to address above obstacles.The innovative use of Pb^(2+)to cross-link sodium alginate enabled a uniform distribution of Pb in the composites,generating Pb-C-PbO three-phase heterostructure.Experimental analysis and theoretical calculations revealed the synergistic interactions between single-atom Pb and PbO nanoparticles in suppressing parasitic hydrogen evolution and promoting the adsorption of Pb atoms.The presence of monatomic Pb and PbO enhanced the affinity of the composites for the negative active materials and facilitated the transformation of the active materials from bulk into spherical shapes to enhance the specific surface area,thereby counteracting sulphation.Through the coordinated integration of various functionalities offered by Pb@C-x,the cycle life of the battery at HRPSoC reaches 7025 cycles,which is two times for LCB with pure carbon materials.Additionally,the discharge capacity increased from 3.52 to 3.79 Ah.This study provides substantial insights into the construction of Pb-C composites for LCBs to inhibit negative sulphation and hydrogen evolution.
文摘Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis.
基金Project(51044007)supported by the National Natural Science Foundation of ChinaProject(08121018)supported by the Science and Technology Project of Taiyuan City,China+2 种基金Project(20091402110010)supported by the Doctoral Found of Ministry of Education of ChinaProject(2008029)supported by the Shanxi Province Foundation for Returned Scholars,ChinaProject(20093007)supported by the Young Subject-Leader Foundation and the Innovative Project for Outstanding Post-graduate of Shanxi Province,China
文摘The corrosion behaviours of die-cast AZ91D magnesium alloys were investigated in 0.1 mol/L sodium sulphate (Na 2 SO 4 ) solutions with different pH values. The corrosion rates, morphologies, and compositions of the corrosion products were studied by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffractometry (XRD). The results indicate that the order of corrosion rates in Na 2 SO 4 solutions with various pH values is pH 2pH 4pH 7pH 9pH 12. The corrosion rates in acidic solutions are higher than those in alkaline solutions, and the corrosion products are mainly magnesium hydroxide (Mg(OH) 2 ) and hydrated sulphate pickeringite (MgAl 2 (SO 4 ) 4 ·22H 2 O). The results also indicate that the solution pH can influence the corrosion rate and morphology of corrosion products. Chloride ions and sulphate ions have different pitting initiation time.
文摘The pharmacokinetics of morphine sulphate was studied in 10 Chinese healthy volunteers after a single oral dose. Blood samples were collected before and after administration of controlled release tablets (CRMS, 30 mg) and immediate release tablets (IRMS, 20 mg). The plasma concentration of morphine was determined by GC MS. The pharmacokinetic parameters of controlled release tablets and immediate release tablets were calculated∶ C max was 19.38±3.80 and 21.27±6.21 ng/ml, t max was 2.36 ±0.37 h and 0.56±0.16 h, t 1/2β was 3.53±0.87 and 3.03±0.74 h, AUC was 145.15±17.65 and 93.08±16.65 ng/ml, respectively. The steady state plasma concentration of morphine sulphate in cancer patients after multiple doses was achieved, C max of CRMS and IRMS was 27.43±0.33 ng/ml and 22.68±0.16 ng/ml, C min of CRMS and IRMS was 19.45±1.44 ng/ml and 18.14±0.49 ng/ml, respectively.
基金Supported by Instituto de Salud Carlos Ⅲ (C03/02), FEDER funds, Fundación Canaria de Investigación (PI 21/02), and Spanish Ministry of Education to CM (EX2004-0396)
文摘AIM: To study whether matrix metalloproteinase-9 (MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice.METHODS: MMP-9-deficient and wild-type (wt) mice were given 5% DSS in drinking water for 5 d followed by recovery up to 7 d. On d 5 and 12 after induction of colitis, gelatinases, MMP-2 and MMP-9, were measured in homogenates of colonic tissue by zymography and Western blot, whereas tissue inhibitor of metalloproteinases (TIMPs) were measured by reverse zymography. The gelatinolytic activity was also determined in supernatants of polymorphonuclear leukocytes (PMN) isolated from mice blood. Moreover, intestinal epithelial cells were stimulated with TNF-α to study whether these cells were able to produce MMPs. Finally, colonic mucosal lesions were measured by microscopic examination. RESULTS: On d 5 of colitis, the activity of MMP-9 was increased in homogenates of colonic tissues (0.24 ± 0.1 vs 21.3 ± 6.4, P < 0.05) and PMN from peripheral blood in wt (0.5 ± 0.1 vs 10.4 ± 0.7, P < 0.05), but not in MMP-9-deficient animals. The MMP-9 activity was also up-regulated by TNF-α in epithelial intestinal cells (2.5 ± 0.5 vs 14.7 ± 3.0, P < 0.05). Although colitis also led to increase of TIMP-1 activity, the MMP-9/TIMP-1 balance remained elevated. Finally, in the MMP-9-deficient colitic mice both the extent and severity of intestinal epithelialinjury were significantly attenuated when compared with wt mice. CONCLUSION: We conclude that DSS induced colitis is markedly attenuated in animals lacking MMP-9. This suggests that intestinal injury induced by DSS is modu-lated by MMP-9 and that inhibition of this gelatinase may reduce inflammation.
基金Funding from CSIR, New Delhi, under network project (ESC.205)
文摘Valuable metal extraction technology from thermal power plant fly ash is limited.In the present study,aluminium is extracted from fly ash as highly pure aluminium sulphate(>99.0%)by leaching with sulphuric acid,followed by pre-concentration and successive crystallization.Two types of fly ashes from different sources,i.e.,Talcher Thermal Power Station(TTPS)and Vedanta Aluminium Company Limited(VAL)were chosen for comparative study on the extraction of aluminium as aluminium sulphate.The product is characterized by powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR)and thermogravimetric analysis(TGA).Purity of aluminium sulphate was also investigated by inductively coupled plasma?optical emission spectrometry(ICP?OES).The extraction efficiency of aluminium depends on the varied solid-to-liquid ratio(fly ash:18mol/L H2SO4,g/mL)and particle size of fly ashes.Physico-chemical analysis indicates that the obtained product is Al2(SO4)3·18H2O,having low iron content(0.08%).
基金supported by the National Major Key Project during the"Eighth Five-Year Plan period".
文摘The Carboniferous system in the Xiaohaizi area, Bachu County, Xinjiang Uygur Autonomous Region, composed of typical mixed terrigenous clastic, carbonate and sulphate sediments, was mainly deposited in the tidal flat and lagoon environments. The mixed sediments occur as the following eleven types: 1. limestone intercalated with siltstone; 2. interbeds of shale and limestone; 3. gypsolyte interbedded with limestone; 4. gypsolyte intercalated with siltstone; 5. gypsolyte interbedded with shale; 6. gypsolyte intercalated with siltstone, limestone and dolomite; 7. siltstone interbedded with gypsolyte and limestone; 8. terrigenous detritus scattered in carbonate matrix; 9. carbonate as cement in clastic rocks; 10. mixed sediments of carbonate and terrigenous mud; 11. mixed sediments of carbonate grains with terrigenous sand. Based on the analysis of the dynamic mechanism of mixed sediments, it is believed that these types of mixed sediments in the study area were controlled by climate, sea level change and sources of sediments.
文摘Molecular dynamics simulation has been performed to simulate the interaction between PESA and the (001) face of anhydrite crystal CaSO4 at different temperatures with the presence of various number of H2O molecules. The results show that PESA can effectively prevent the growth of CaSO4 scale at 323-343 K. At the same temperature, the binding energy between PESA and the (001) face of CaSO4 for systems with various number of H2O has the order of E-bind(OH2O)〉Ebind(200-400H2O)〉E, bind(lOOH2O). For the same system at different temperatures the binding energies are close and are mainly contributed from the Coulomb interaction, including ionic bonds. The bonds are formed between the calcium atoms of anhydrite scale crystal and the Hydrogen bonds are formed between the O oxygen atoms of the carboxyl group of PESA. atoms of the carboxyl group of PESA and the H atoms of H2O. van der Waals interaction is conducive to the stability of the system of PESA, H2O, and CaSO4. The radial distribution functions of O(carbonyl of PESA)-H(H2O), O(CaSO4)-H(H2O), and O(CaSO4)-H(PESA) imply that solvents have effects on the anti-scale performance of PESA to CaSO4.
基金Project(2007CB613601) supported by the National Basic Research Program of ChinaProject(10C1095) supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of low-grade copper ore with high-alkality gangues was studied in ammonia-ammonium sulphate solution.The main parameters,such as ammonia and ammonium sulphate concentrations,particle size,solid-to-liquid ratio and reaction temperature,were chosen in the experiments.The results show that the increase of temperature,concentrations of ammonia and ammonium sulphate is propitious to the leaching rate of copper ore.The leaching rate increases with the decrease of particle size and solid-to-liquid ratio.The leaching rate is controlled by the diffusion through the ash layer and the activation energy is determined to be 25.54 kJ/mol.A semi-empirical equation was proposed to describe the leaching kinetics.
基金This study was funded by the National Natural Science Foundation of China(Grant Number 51568044)the first-class subjects of Lanzhou University of Technology(Grant Number 25-225209)Research project of China Municipal Engineering Northwest Design and Research Institute Co.Ltd.(Grant Number XBSZKY2031).
文摘Lime-fly ash stabilized loess has a poor early strength,which results in a later traffic opening time when it is used as road-base materials.Consideration of the significant early strength characteristics of sulphate aluminum cement(SAC),it is always added into the lime-fly ash mixtures to improve the early strength of stabilized loess.However,there is a scarcity of research on the mechanical behavior of lime-fly ash-SAC stabilized loess and there is a lack of quantitative evaluation of loess stabilized with binder materials.This research explored the effects of the amount of binder materials,curing time and porosity on the unconfined compressive strength(UCS),splitting tensile strength(STS),cohesion(c)and friction angle(φ)of lime-fly ash-SAC stabilized loess by a series of unconfined compressive tests(UCT)and splitting tensile tests(STT).The results indicate that an increase in curing time and a decrease in porosity lead to a continuous increase in the UCS and STS for lime-fly ash-SAC stabilized loess.The addition of SAC has a prominent enhancement in the early strength of lime-fly ash-SAC stabilized loess.When the curing time,porosity,and binder content were constant,the UCS and STS increase with increasing SAC content;For a stabilized loess with 30%binder content and 5%SAC content after 1 day of curing,the UCS was greater than 0.7 MPa,which meets the requirement of opening traffic,so lime-fly ash-SAC stabilized loess could be used as an excellent maintenance material for road-base;In accordance with the analysis of testing data,empirical relationships between the UCS and STS of lime-fly-SAC stabilized loess and key effect factors(binder materials content,curing time and porosity)were developed,which can provide references for reasonably selecting the amount of binder materials,compaction degree and curing period to meet the required strength of practical engineering.Finally,based on the Mohr-Coulomb theory and the above empirical relationships,a simpler method for calculating the c andφof stabilized loess was proposed,with which,the shear strength parameters can be determined only by UCT or STT.
文摘In this paper,the combined addition of copper or iron and sulphate ions onto TiO_(2) prepared by a simple sol-gel method is studied for formic acid photocatalytic conversion.A wide structural and morphological characterization of the different photocatalysts was performed by X-ray diffraction(XRD),N_(2)-physisorption for BET surface area measurements,scanning and transmission electronic microscopies(SEM and TEM),UV-Vis diffuse spectroscopy(DRS)and X-ray photoelectron spectroscopy(XPS),in order to correlate the physico-chemical properties of the materials to their photocatalytic efficiencies for formic acid oxidation.Results have shown important differences among the catalysts depending on the metal added.Sulphated TiO_(2)/Cu(1%Cu)was the best photocatalyst obtaining about 100% formic acid conversion in only 5 min.The appropriate physico-chemical features of this photocatalyst,given by the addition of combined copper and sulphate ions,explain its excellence in photocatalytic reaction.
文摘Biogas production generates digested slurry as a byproduct. It can be used as a fertilizer especially after its conversion into digested liquid. A pot based study was conducted in order to evaluate the effect of the application of digested liquid on CH4 and N2O flux, and plant biomass in paddy. Analysis revealed that digested liquid treated soils released more CH4 compared to ammonium sulphate and the control. Ammonium sulphate treated soil emitted the highest N20 whereas digested liquid application decreased its emission significantly. Further, the cumulative emission over 101 d of the experiment was found to be higher for CHa (16.9 to 29.9 g m^-2) compared to N20 (-49.3 to 18.9 mg m^-2) for all treatments. Digested liquid application had positive impact on plant variables such as panicle number and weight of panicles. This study suggests that digested liquid application significantly decrease N20 emission and increase CH4 emission possibly due to affecting the availability of organic C in the soil to microbial activity for methanogenesis. Another possibility for enhancing CH4 emission by following biogas digested liquid could be attributed to the increase in plant biomass.
基金support from National Science Foundation of China(Nos.03772648 and 30721005)Knowledge Innovation Program of the Chinese Academy of Sciences(No.06G8031014)
文摘A new debenzylation of benzyl esters by silica-supported sodium hydrogen sulfate is described. The debenzylation could be achieved selectively and efficiently in good to excellent yields without affecting sensitive functional groups such as nitro, unsaturated bonds, and ethyl ester.
文摘BACKGROUND Anti-tumor necrosis factor α(TNFα) represents the best therapeutic option to induce mucosal healing and clinical remission in patients with moderate-severe ulcerative colitis. On the other side gut microbiota plays a crucial role in pathogenesis of ulcerative colitis but few information exists on how microbiota changes following anti-TNFα therapy and on microbiota role in mucosal healing.AIM To elucidate whether gut microbiota and immune system changes appear following anti TNFα therapy during dextran sulfate sodium(DSS) colitis.METHODS Eighty C57 BL/6 mice were divided into four groups: "No DSS", "No DSS + antiTNFα", "DSS" and "DSS + anti-TNFα". "DSS" and "DSS + anti-TNFα" were treated for 5 d with 3% DSS. At day 3, mice whithin "No DSS+anti-TNFα" and"DSS+anti-TNFα" group received 5 mg/kg of an anti-TNFα agent. Forty mice were sacrificed at day 5, forty at day 12, after one week of recovery post DSS. The severity of colitis was assessed by a clinical score(Disease Activity Index), colon length and histology. Bacteria such as Bacteroides, Clostridiaceae, Enterococcaceae and Fecalibacterium prausnitzii(F. prausnitzii) were evaluated by quantitative PCR.Type 1 helper T lymphocytes(Th1), type 17 helper T lymphocytes(Th17) and CD4+ regulatory T lymphocytes(Treg) distributions in the mesenteric lymph node(MLN) were studied by flow cytometry.RESULTS Bacteria associated with a healthy state(i.e., such as Bacteroides, Clostridiaceae and F. prausnitzii) decreased during colitis and increased in course of anti-TNFαtreatment. Conversely, microorganisms belonging to Enterococcaceae genera,which are linked to inflammatory processes, showed an opposite trend.Furthermore, in colitic mice treated with anti-TNFα microbial changes were associated with an initial increase(day 5 of the colitis) in Treg cells and a consequent decrease(day 12 post DSS) in Th1 and Th17 frequency cells. Healthy mice treated with anti-TNFα showed the same histological, microbial and immune features of untreated colitic mice. "No DSS + anti-TNFα" group showed a lymphomononuclear infiltrate both at 5 th and 12 th d at hematoxylin and eosin staining, an increase of in Th1 and Th17 frequency at day 12, an increase of Enterococcaceae at day 5, a decrease of Bacteroides and Clostridiaceae at day 12.CONCLUSION Anti-TNFα treatment in experimental model of colitis improves disease activity but it is associated to an increase in Th17 pathway together with gut microbiota alteration.
文摘The assessment of magnesium sulphate attack on concretes containing rice husk ash (RHA, 20wt% of the cementitious materials) with various average particle sizes was investigated. The total cementitious materials were 390 kg and the water-to-binder ratio (W/B) was 0.53 for all mixtures. Specimens were initially cured in water for 7 d and then immersed in the 3wt% magnesium sulphate solution for up to 111 d of exposure. The specimens were subjected to drying-wetting cycles to accelerate sulphate attack. In addition to the visual monitoring of the specimens, the concrete specimens were subsequently tested for compressive strength, dynamic modulus of elasticity, and length and mass changes. The results show that the specimens exposed to sulphate attack exhibit higher strength and dynamic modulus than those kept in water. The length change is negligible and can be attributed to the normal swelling of concrete. On the other hand, concretes suffers mass loss and surface spalling and softening; the fine RHA-concrete results in a better resistance. For the accelerated sulphate attack method used in this study, mass change and visual monitoring are recommended for assessing the deterioration degree and the effectiveness of supplementary cementitious materials to resist sulphate attack.
基金supported by the Natural Science Foundation of China(32172382,31801716,and 31571986)the National Key Research and Development Program of China(2021YFC2600404)the Scientific Research Project of Hunan Provincial Department of Education of China(19B259)。
文摘Potassium(K),an important nutrient element,can improve the stress resistance/tolerance of crops.The application of K in resisting plant-parasitic nematodes shows that the K treatment can reduce the occurrence of nematode diseases and increase crop yield.However,data on K_(2)SO_(4)induced rice resistance against the root-knot nematode Meloidogyne graminicola are still lacking.In this work,K_(2)SO_(4)treatment reduced galls and nematodes in rice plants and delayed the development of nematodes.Rather than affecting the attractiveness of roots to nematodes and the morphological phenotype of giant cells at feeding sites,such an effect is achieved by rapidly priming hydrogen peroxide(H_(2)O_(2))accumulation and increasing callose deposition.Meanwhile,galls and nematodes in rice roots were more in the potassium channel OsAKT11 and transporter OsHAK5 gene-deficient plants than in wild-type,while the K_(2)SO_(4)-induced resistance showed weaker in the defective plants.In addition,during the process of nematode infection,the expression of jasmonic acid(JA)/ethylene(ET)/brassinolide(BR)signaling pathway-related genes and pathogenesis-related(PR)genes OsPR1 a/OsPR1 b was up-regulated in rice after K_(2)SO_(4)treatment.In conclusion,K_(2)SO_(4)induced rice resistance against M.graminicola.The mechanism of inducing resistance was to prime the basal defense and required the participation of the K^(+)channel and transporter in rice.These laid a foundation for further study on the mechanism of rice defense against nematodes and the rational use of potassium fertilizer on improving rice resistance against nematodes in the field.