A preliminary organic geochemical study shows that the sulphide ores from the hydrothermal deposit of the Okinawa Trough are generally low in the total organic carbon and extremely low in the soluble organic matter. I...A preliminary organic geochemical study shows that the sulphide ores from the hydrothermal deposit of the Okinawa Trough are generally low in the total organic carbon and extremely low in the soluble organic matter. In the aliphatic hydrocarbon fraction, the n-alkanes range from C15 to C35, with usual maxima in the middle n-C20 region and strong odd-carbon number predominance when n > C25 (CPI = 1.2). The dominant analog in the aromatic fraction is phenanthrene, a polynuclear aromatic hydrocarbon, which provides evidence for hydrothermal activity. The organic matter derived mainly from marine planktonic and terrigenous vascular plants is entrapped in a high-temperature regime such as an active chimney and cooled quickly in the sulphide ores on the seafloor. Organic matter and sulphides are definitely products of a high-temperature alteration. The biomarker compounds indicate that the ores are formed under low Eh and pH conditions—a reducing to anoxic environment, which is favourable for sulphates to be reduced into sulphides by biogenic (bacterial) or abiogenic activity.展开更多
This research was conducted to investigate the biooxidation and copper dissolution from raw low-grade refractory copper sulphide ores located in the Xinjiang Autonomous Region of China using adapted Thiobacillus ferro...This research was conducted to investigate the biooxidation and copper dissolution from raw low-grade refractory copper sulphide ores located in the Xinjiang Autonomous Region of China using adapted Thiobacillus ferrooxidans bacteria.In order to accelerate the bioleach-ing rate,the adapted mixed bacteria and silver ion catalyst were tested in the leach columns at laboratory scale.The overall acid consumption was 4.3kg sulphuric acid per kg of dissolved copper and was linearly related to the percent copper dissolution.The calculated copper dissolution rates obey the Shrinking Core Model.The relative activation energy of the whole biooxidative leaching stages was calculated to be 48.58kJ/mol.展开更多
Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate...Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.展开更多
Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first t...Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.展开更多
Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on ex...Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed.展开更多
A study was carried out to examine the possibility for Aspergillus niger strain KBS4 to bioleach metals from sulphide ore with low concentration of arsenic and to optimize the parameters that affect this process by or...A study was carried out to examine the possibility for Aspergillus niger strain KBS4 to bioleach metals from sulphide ore with low concentration of arsenic and to optimize the parameters that affect this process by orthogonal array optimization. Fungal sample was collected, purified and sequenced. The bioleaching process was optimized with L25 Taguchi orthogonal experimental array design. Five factors were investigated and 25 batch bioleaching tests were run at five levels for each factor. The parameters were initial pH, particle size, pulp density, initial inoculums and residence time for bioleaching. The experimental results showed that under optimized leaching conditions: pH 5.5, particle size 180 μm, initial inoculums size 3×10 7 spores per ml, pulp density 15% and residence time of 20 days, the bioleach ability of metals were 63% Fe, 68% Zn, 60% As, 79% Cu and 54% Al. The biosorption of metal ions by fungal biomass might occur during the bioleaching process but it did not hinder the removal of metal ions by bioleaching.展开更多
The effects of Z11 and AP407 collectors as well as AF65 and AF70 frothers were evaluated in the rougher flotation circuit of the Sungun copper concentrator plant using 2 4 full factorial design.Response functions were...The effects of Z11 and AP407 collectors as well as AF65 and AF70 frothers were evaluated in the rougher flotation circuit of the Sungun copper concentrator plant using 2 4 full factorial design.Response functions were produced for both Cu grade and recovery and optimized within the experimental range.The optimum reagent dosages were found to be 12.01 g/t Z11,11 g/t AP407,3 g/t AF65 and 5 g/t AF70 to attain the maximum Cu grade(8.17%).The reagent dosages of 12 g/t Z11,11 g/t AP407,3 g/t AF65 and 15 g/t AF70 produced the maximum Cu recovery(86.44%).The collector distribution demonstrated that the distribution pattern of(32%,32%,20%,16%)can produce the best recovery(87.75%)in comparison to other examined distribution patterns.展开更多
基金This work was supported by the National Natural Science Foundation of China Grant 49773177.
文摘A preliminary organic geochemical study shows that the sulphide ores from the hydrothermal deposit of the Okinawa Trough are generally low in the total organic carbon and extremely low in the soluble organic matter. In the aliphatic hydrocarbon fraction, the n-alkanes range from C15 to C35, with usual maxima in the middle n-C20 region and strong odd-carbon number predominance when n > C25 (CPI = 1.2). The dominant analog in the aromatic fraction is phenanthrene, a polynuclear aromatic hydrocarbon, which provides evidence for hydrothermal activity. The organic matter derived mainly from marine planktonic and terrigenous vascular plants is entrapped in a high-temperature regime such as an active chimney and cooled quickly in the sulphide ores on the seafloor. Organic matter and sulphides are definitely products of a high-temperature alteration. The biomarker compounds indicate that the ores are formed under low Eh and pH conditions—a reducing to anoxic environment, which is favourable for sulphates to be reduced into sulphides by biogenic (bacterial) or abiogenic activity.
基金Financial contributions from the National Natural Science Foundation of China(Grant Nos.20776019 and 40573044)the“A Hundred Talents Program”of the Chinese Academy of Sciences(No.0560051057)+1 种基金the Key Program of Department of Education of Sichuan Government(No.2004A146)the Applied Basic Research Program of Sichuan Government(Nos.05JY029-089-1,05JY029-089-2)are acknowl-edged.
文摘This research was conducted to investigate the biooxidation and copper dissolution from raw low-grade refractory copper sulphide ores located in the Xinjiang Autonomous Region of China using adapted Thiobacillus ferrooxidans bacteria.In order to accelerate the bioleach-ing rate,the adapted mixed bacteria and silver ion catalyst were tested in the leach columns at laboratory scale.The overall acid consumption was 4.3kg sulphuric acid per kg of dissolved copper and was linearly related to the percent copper dissolution.The calculated copper dissolution rates obey the Shrinking Core Model.The relative activation energy of the whole biooxidative leaching stages was calculated to be 48.58kJ/mol.
基金This work was supported by National Science Foundation for Excellent Young Scholars,China(No.51722401)Key Project of National Natural Science Foundation,China(No.51734001)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C1).
文摘Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.
基金the AbbasAbad copper mineShahrood University of Technology for their financial support during this research。
文摘Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.
基金made possible through a visiting postdoctoral fellowship to A.H. Ozdeniz by the Scientific and Technological Research Council of Turkey (TUBITAK)An operating research grant through the Natural Sciences and Engineering Council of Canada (NSERC) is also acknowledged
文摘Original surface chemistry of sulphidesis altered upon contact with air, leading to ''oxidation'', which is accompanied by evolution of heat. The current study reports results of an investigation on extent of exothermicity of an experimental nickel-copper sulphide stockpile that was formed at a mining site in Sudbury, Canada. The ore contained pentlandite and chalcopyrite that are accompanied by a large quantity of pyrrhotite. The self-heating characteristics were recorded by temperature sensors placed inside the stockpile. Ambient conditions such as temperature, humidity, and wind velocity were simultaneously recorded. The inner temperature of the stockpile indicated significant fluctuations due to rapid changes, particularly in the outside temperature. The minimum and maximum temperatures recorded in the outside and inside were 5 and 10.5, 44.3 and 32 ℃, respectively. The self-heating capacity of the sulphide ore stockpile observed represents a mild case compared to that experienced by coals. Possible reasons are discussed.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (IRT0974)the Higher Education Commission of Pakistan (20-652/R&D/05-43622)
文摘A study was carried out to examine the possibility for Aspergillus niger strain KBS4 to bioleach metals from sulphide ore with low concentration of arsenic and to optimize the parameters that affect this process by orthogonal array optimization. Fungal sample was collected, purified and sequenced. The bioleaching process was optimized with L25 Taguchi orthogonal experimental array design. Five factors were investigated and 25 batch bioleaching tests were run at five levels for each factor. The parameters were initial pH, particle size, pulp density, initial inoculums and residence time for bioleaching. The experimental results showed that under optimized leaching conditions: pH 5.5, particle size 180 μm, initial inoculums size 3×10 7 spores per ml, pulp density 15% and residence time of 20 days, the bioleach ability of metals were 63% Fe, 68% Zn, 60% As, 79% Cu and 54% Al. The biosorption of metal ions by fungal biomass might occur during the bioleaching process but it did not hinder the removal of metal ions by bioleaching.
文摘The effects of Z11 and AP407 collectors as well as AF65 and AF70 frothers were evaluated in the rougher flotation circuit of the Sungun copper concentrator plant using 2 4 full factorial design.Response functions were produced for both Cu grade and recovery and optimized within the experimental range.The optimum reagent dosages were found to be 12.01 g/t Z11,11 g/t AP407,3 g/t AF65 and 5 g/t AF70 to attain the maximum Cu grade(8.17%).The reagent dosages of 12 g/t Z11,11 g/t AP407,3 g/t AF65 and 15 g/t AF70 produced the maximum Cu recovery(86.44%).The collector distribution demonstrated that the distribution pattern of(32%,32%,20%,16%)can produce the best recovery(87.75%)in comparison to other examined distribution patterns.