Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,h...Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields.展开更多
Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permane...Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.展开更多
We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center.During 1990s,that volcanic structure was reported active a...We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center.During 1990s,that volcanic structure was reported active and sulphide samples were collected by MIR submersible.A section of a chimney-like structure from the crater-floor was studied here.The Fe-depleted sphalerites,and Co-depleted pyrites in that chimney were similar to those commonly found in low to moderate temperature(<300℃)sulphides from sediment-starved hydrothermal systems.Bulk analyses of three parts of that chimney section showed substantial enrichment of Zn(18%–20%)and Fe(14%–27%)but depletion of Cu(0.8%–1.3%).In chondrite-normalized rare earth element-patterns,the significant negative Ce-anomalies(Ce/Ce*=0.27–0.39)and weakly positive Eu-anomalies(Eu/Eu*=1.60–1.68)suggested sulphide mineralisation took place from reduced low-temperature fluid.The depleted concentration of lithophiles in this sulphide indicates restricted contribution of sub-ducting plate in genesis of source fluid as compared to those from other parts of Lau Spreading Centre.Uniform mineralogy and bulk composition of subsamples across the chimney section suggests barely any alteration of fluid composition and/or mode of mineralisation occurred during its growth.展开更多
The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve ob...The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.展开更多
Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents...Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.展开更多
A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines an...A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant展开更多
The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging fr...The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.展开更多
The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is am...The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is among the largest high grade porphyry Cu-Au deposits in the world.These deposits lie within the Gurvansayhan island-arc terrane,a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc,located towards the southern margin of the Central Asian Orogenic Belt,a collage of magmatic arcs that were periodically active from the late Neoproterozoic to PermoTriassic,extending from the Urals Mountains to the Pacific Ocean.Mineralisation at Oyu Tolgoi is associated with multiple,overlapping,intrusions of late Devonian(~372 to 370 Ma) quartzmonzodiorite intruding Devonian(or older) juvenile,probably intra-oceanic arc-related,basaltic lavas and lesser volcaniclastic rocks,unconformably overlain by late Devonian(~370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks.These quartz-monzodiorite intrusions range from earlymineral porphyritic dykes,to larger,linear,syn-,late- and post-mineral dykes and stocks.Ore was deposited within syn-mineral quartz-monzodiorites,but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks.Following ore deposition,an allochthonous plate of older Devonian(or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at~365 Ma.Mineralisation is characterised by varying,telescoped stages of intrusion and alteration.Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration,mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts.Downward reflux of cooled,late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions,and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks.Uplift,facilitated by syn-mineral longitudinal faulting,brought sections of the porphyry deposit to shallower depths,to be overprinted and upgraded by late stage,shallower,advanced argillic alteration and high sulphidation mineralisation.Key controls on the location,size and grade of the deposit cluster include(i) a long-lived,narrow faulted corridor;(ii) multiple pulses of overlapping intrusion within the same structure;and(iii) enclosing reactive,mafic dominated wall rocks,focussing ore.展开更多
In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scannin...In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.展开更多
The process of lignite desulphurization via its treatment by an oxidant(air or air–steam mixture)has been studied.The research objective was useful determination of steam application in oxidative lignite desulphuriza...The process of lignite desulphurization via its treatment by an oxidant(air or air–steam mixture)has been studied.The research objective was useful determination of steam application in oxidative lignite desulphurization.It has been proved that the water steam should be included in the oxidant composition to increase the hydrogen sulphide and combustible constituent content in the gases obtained during the processes under research.The impact of factors which affect the reactions between solid(in our case–lignite)and gaseous reagent(oxidant,i.e.air and or air–steam mixture)upon the research process has been investigated,if these reactions occur in the kinetic area.Such factors are linear rate of oxidant movement and coal grain size.The values of oxidant movement linear rate and coal grain size,which the reaction transfer from pyrite sulphur and organic content of lignite from diffusion into kinetic area occurs by,have been determined.Under these‘‘transfer’’conditions,the values of coefficients of oxidant mass transfer(β,m/s)as well as Sherwood criteria and boiling layer differences have been calculated.展开更多
The aim of this study is to apply process mineralogy as a practical tool for further understanding and predicting the flotation kinetics of the copper sulfide minerals. The minerals' composition and association, g...The aim of this study is to apply process mineralogy as a practical tool for further understanding and predicting the flotation kinetics of the copper sulfide minerals. The minerals' composition and association, grain distribution, and liberation within the ore samples were analyzed in the feed, concentrate, and the tailings of the flotation processes with two pulp densities of 25 wt% and 30 wt%. The major copper-bearing minerals identified by microscopic analysis of the concentrate samples included chalcopyrite(56.2 wt%), chalcocite(29.1 wt%),covellite(6.4 wt%), and bornite(4.7 wt%). Pyrite was the main sulfide gangue mineral(3.6 wt%) in the concentrates. A 95% degree of liberation with d_(80) > 80 μm was obtained for chalcopyrite as the main copper mineral in the ore sample. The recovery rate and the grade in the concentrates were enhanced with increasing chalcopyrite particle size. Chalcopyrite particles with a d_(80) of approximately 100 μm were recovered at the early stages of the flotation process. The kinetic studies showed that the kinetic second-order rectangular distribution model perfectly fit the flotation test data. Characterization of the kinetic parameters indicated that the optimum granulation distribution range for achieving a maximum flotation rate for chalcopyrite particles was between the sizes 50 and 55 μm.展开更多
Microwave assisted leaching of complex copper sulphide concentrate with ferric chloride was investigated, and its mechanism was analyzed. The results show that the leaching rate by microwave irradiation heating is mu...Microwave assisted leaching of complex copper sulphide concentrate with ferric chloride was investigated, and its mechanism was analyzed. The results show that the leaching rate by microwave irradiation heating is much faster than that by conventional heating.展开更多
This study reports major, trace, rare earth and platinum group element compositions of lava flows from the Vempalle Formation of Cuddapah Basin through an integrated petrological and geochemical approach to address ma...This study reports major, trace, rare earth and platinum group element compositions of lava flows from the Vempalle Formation of Cuddapah Basin through an integrated petrological and geochemical approach to address mantle conditions, magma generation processes and tectonic regimes involved in their formation. Six flows have been identified on the basis of morphological features and systematic three-tier arrangement of vesicular-entablature-colonnade zones. Petrographically, the studied flows are porphyritic basalts with plagioclase and clinopyroxene representing dominant phenocrystal phases.Major and trace element characteristics reflect moderate magmatic differentiation and fractional crystallization of tholeiitic magmas. Chondrite-normalized REE patterns corroborate pronounced LREE/HREE fractionation with LREE enrichment over MREE and HREE. Primitive mantle normalized trace element abundances are marked by LILE-LREE enrichment with relative HFSE depletion collectively conforming to intraplate magmatism with contributions from sub-continental lithospheric mantle(SCLM) and extensive melt-crust interaction. PGE compositions of Vempalle lavas attest to early sulphur-saturated nature of magmas with pronounced sulphide fractionation, while PPGE enrichment over IPGE and higher Pd/Ir ratios accord to the role of a metasomatized lithospheric mantle in the genesis of the lava flows. HFSEREE-PGE systematics invoke heterogeneous mantle sources comprising depleted asthenospheric MORB type components combined with plume type melts. HFSE-REE variations account for polybaric melting at variable depths ranging from garnet to spinel lherzolite compositional domains of mantle. Intraplate tectonic setting for the Vempalle flows with P-MORB affinity is further substantiated by(i) their origin from a rising mantle plume trapping depleted asthenospheric MORB mantle during ascent,(ii) interaction between plume-derived melts and SCLM,(iii) their rift-controlled intrabasinal emplacement through Archeane Proterozoic cratonic blocks in a subduction-unrelated ocean-continent transition zone(OCTZ). The present study is significant in light of the evolution of Cuddapah basin in the global tectonic framework in terms of its association with Antarctica, plume incubation, lithospheric melting and thinning, asthenospheric infiltration collectively affecting the rifted margin of eastern Dharwar Craton and serving as precursors to supercontinent disintegration.展开更多
The flotation separation of smithsonite from calcite and quartz using a alkyl diamine ether(GE-609)as the collector was investigated through micro-flotation experiments and the real ore flotation experiments.The resul...The flotation separation of smithsonite from calcite and quartz using a alkyl diamine ether(GE-609)as the collector was investigated through micro-flotation experiments and the real ore flotation experiments.The results show that GE-609exhibits good collecting capability to three minerals without selectivity.The presence of sodium sulfide enhances the flotation of smithsonite and calcite while inhibits quartz.Moreover,both sodium silicate and sodium hexametaphosphate exhibit good selective inhibition to calcite.The real ore test results show that a zinc concentrate containing23.51%Zn with the recovery of71.02%is obtained in the closed-circuit test.To understand the adsorption of GE-609on smithsonite surface,zeta potential measurement and FTIR analysis were carried out,and the results indicate that the collector GE-609can adsorb on smithsonite surface through both electrostatic adsorption and chemical adsorption,and the presence of sodium sulfide enhances the adsorption of GE-609.展开更多
Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were in...Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were investigated using a central composite design.Preliminary results showed that sodium-isopropyl-xanthate(SIPX)and O-isopropyl-N-ethyl-thionocarbamate(IPETC)were found to be the most efficient collectors in the presence of lime as the pH regulator.The effects of dosage of collectors(SIPX and IPETC)and the dosage of methyl-isobutyl-carbonyl(MIBC)as frother on the separation efficiency were evaluated at different pH levels.Based on the analysis of variance(ANOVA),the interaction effects of the collector−pH and collector−frother were significant for the separation efficiency.At the low level of collector dosage,increasing pH from 9 to 11 enhanced copper separation efficiency from 81%to 86%for IPETC and from 77%to 86%for SIPX.Results of ANOVA showed that the maximum copper separation efficiency(88.7%)was obtained at the dosages of 8.6 g/t SIPX,7 g/t IPETC and 20 g/t MIBC at pH 11.Finally,it was concluded that a mixture of SIPX and IPETC collectors was more suitable to treat highly clayey sulphide ores.展开更多
Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first t...Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.展开更多
The Devonian volcano-passive continental margin in southern Altay is a significant volcanogenic massive sulphide metallogenic belt. Acidic volcanism has been dominant on the inner side of the volcano-passive continent...The Devonian volcano-passive continental margin in southern Altay is a significant volcanogenic massive sulphide metallogenic belt. Acidic volcanism has been dominant on the inner side of the volcano-passive continental margin, i.e., near the old land, resulting in a Pb-Zn metallogenic sub-belt, in which the ore deposits are hosted by sedimentary rocks in volcanic series, as represented by the large Koktal Pb-Zn deposits. In the central part of the margin far away from the old land, bimodal volcanic formations are well developed, forming volcanics-hosted Cu-Zn metallogenic sub-belts, e.g., the large-scale Ashele Cu-Zn deposit. The Qiaoxiahala sub-belt on the outer side of the margin near the ocean ridge is located at the spreading central trough, where ophiolite suites are developed. This type of deposits is rich in gold and copper, similar to the Cyprus-type Fe-Cu-Au metallogenic sub-belt in metallogenic environment (represented by the Qiaoxiahala medium-scale Fe-Cu-Au deposit). From the old land to the ocean, the mineralizing age becomes younger, i.e., from Early Devonian→Early and Middle Devonian→Middle Devonian, forming a complete metallogenic zoning series on the volcano-passive continental margin. Comparative studies show that the massive sulphide deposits distributed on the volcano-passive continental margin are different from those formed under a plate subduction regime and oceanic ridge environment; the former have their unique features and wide distributions, representing a new type of volcanogenic massive sulphide deposits—the Altay type.展开更多
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran...Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.展开更多
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉po...The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered disso- lution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopy- rite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide CtuFe2S9, resoectivelv. The ability of these oassivation layers was found as Cu4Fe2S9〉Cu4S11〉S8〉iarosite.展开更多
Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the ...Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the presence of mesophilic mixed bacterial culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. A mesophilic acidophiles culture was isolated from the acidic solution of the underground copper mine of Bor, Serbia. The nutrient medium was 9K at pH 1.6. 87% of the particles were <10 µm in size, with a pulp density of 8% (w/v). Bioleaching efficiencies of 89% for zinc, 83% for copper, and 68% for iron can be achieved in the examined conditions. Kinetic analysis shows that the change in leaching corresponds to the Spencer-Topley kinetic model for diffusion-controlled topochemical reactions.展开更多
基金financial support from the Chang Jiang Scholars Program (51073047)the National Natural Science Foundation of China (51773049)+5 种基金the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund (HIT15-1A01)the Harbin City Science and Technology Projects (2013DB4BP031 and RC2014QN017035)the Natural Science Foundation of Shandong Province of China (ZR2023QE071)the College Students’ Innovation and Entrepreneurship Training Program Projects of Shandong Province (S202211065048)the Scientific Research Foundation of Qingdao University (DC1900009425)the China Postdoctoral Science Foundation (2022TQ0282)
文摘Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields.
基金study received financial support from the National Natural Science Foundation of China(No.U22B2065),EditChecks(https://editchecks.com.cn/)for providing linguistic assistance during the preparation of this manuscript.
文摘Safe emplacement of high-level nuclear waste(HLNW)arising from the utilization of nuclear power is a frequently en-countered and considerably challenging issue.The widely accepted and feasible approach for the permanent disposal of HLNW involves housing it in a corrosion-resistant container and subsequently burying it deep in a geologic repository.The focus lies on ensuring the dur-ability and integrity of the container in this process.This review introduces various techniques and strategies employed in controlling the corrosion of used fuel containers(UFCs)using copper(Cu)as corrosion barrier in the context of deep geological disposal.Overall,these corrosion prevention techniques and methods have been effectively implemented and employed to successfully mitigate the corrosion challenges encountered during the permanent disposal of Cu containers(e.g.,corrosion mechanisms and corrosion parameters)in deep geologic repositories.The primary objective of this review is to provide an extensive examination of the alteration in the corrosion envir-onment encountered by the UFCs when subjected to deep geologic repository conditions and focusing on addressing the potential corro-sion scenarios.
文摘We report the mineralogy and geochemistry of hydrothermal sulphide from the crater of a volcanic high near 18°36.4′S of the Central Lau Spreading Center.During 1990s,that volcanic structure was reported active and sulphide samples were collected by MIR submersible.A section of a chimney-like structure from the crater-floor was studied here.The Fe-depleted sphalerites,and Co-depleted pyrites in that chimney were similar to those commonly found in low to moderate temperature(<300℃)sulphides from sediment-starved hydrothermal systems.Bulk analyses of three parts of that chimney section showed substantial enrichment of Zn(18%–20%)and Fe(14%–27%)but depletion of Cu(0.8%–1.3%).In chondrite-normalized rare earth element-patterns,the significant negative Ce-anomalies(Ce/Ce*=0.27–0.39)and weakly positive Eu-anomalies(Eu/Eu*=1.60–1.68)suggested sulphide mineralisation took place from reduced low-temperature fluid.The depleted concentration of lithophiles in this sulphide indicates restricted contribution of sub-ducting plate in genesis of source fluid as compared to those from other parts of Lau Spreading Centre.Uniform mineralogy and bulk composition of subsamples across the chimney section suggests barely any alteration of fluid composition and/or mode of mineralisation occurred during its growth.
基金Project (50964004) supported by the National Natural Science Foundation of China
文摘The leaching behavior of main metallic sulphides in zinc concentrate under atmospheric oxygen-rich direct leaching conditions was studied through mineralogical analysis. The results show that the sulphides dissolve obviously except pyrite. Based on the relationship between elemental sulfur and the residual sulphides in the leaching residue, the dissolution of sphalerite, chalcopyrite, covellite and galena is assumed to follow the indirect oxidation reactions, where the acidic dissolution takes place firstly and then the released H2S transfers from the mineral surface into bulk solution and is further oxidized into elemental sulfur. The interface chemical reaction is further supposed as the controlling step in the leaching of these sulphides. The direct electrochemical oxidation reactions are assumed to contribute to the dissolution of pyrrhotite, which is controlled by the diffusion through elemental sulfur layer.
文摘Natural gas containing hydrogen sulphide (H2S) has been found in several petroliferous basins in China, such as the Sichuan Basin, Bohai Bay Basin, Ordos Basin, Tarim Basin, etc. Natural gas with higher HES contents (HES 〉5 % mol.) is mostly distributed in both the gas reservoirs of Dukouhe, Luojiazhai, Puguang and Tieshanpo, which belong to the Triassic Feixianguan Formation in the northeastern Sichuan Basin and those of the Kongdian-Shahejie formations in the northeastern Jinxian Sag of the Jizhong Depression, Bohai Bay Basin. In the Sichuan Basin, the HES contents of natural gas average over 9% and some can be 17 %, while those of the Bohai Bay Basin range from 40 % to 92 %, being then one of the gas reservoirs with the highest H2S contents in the world. Based on detailed observation and sample analysis results of a total 5000 m of core from over 70 wells in the above-mentioned two basins, especially sulfur isotopic analysis of gypsum, brimstone, pyrite and natural gas, also with integrated study of the geochemical characteristics of hydrocarbons, it is thought that the natural gas with high HES contents resulted from thermochemical sulfate reduction (TSR) reactions. Among them, the natural gas in the Feixianguan Formation resulted from TSR reactions participated by hydrocarbon gas, while that in the Zhaolanzhuang of the Jinxian Sag being the product of TSR participated by crude oil. During the consumption process of hydrocarbons due to TSR, the heavy hydrocarbons were apt to react with sulfate, which accordingly resulted in the dry coefficient of natural gas increasing and the carbon isotopes becoming heavier.
文摘A logic fault tree of mine spontaneous combustion of sulphide ores was built by the fault tree analysis (FTA) based on a lot of mechanism investigation of sulphide ore spontaneous combustion in more than ten mines and review of a great amount of relevant
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40602016)the National Key Basic Research and Development Planning Project (2006CB202307).
文摘The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.
文摘The Oyu Tolgoi cluster of seven porphyry Cu-Au-Mo deposits in southern Mongolia,define a narrow,linear,12 km long,almost continuously mineralised trend,which contains in excess of 42 Mt of Cu and1850 t of Au,and is among the largest high grade porphyry Cu-Au deposits in the world.These deposits lie within the Gurvansayhan island-arc terrane,a fault bounded segment of the broader Silurian to Carboniferous Kazakh-Mongol arc,located towards the southern margin of the Central Asian Orogenic Belt,a collage of magmatic arcs that were periodically active from the late Neoproterozoic to PermoTriassic,extending from the Urals Mountains to the Pacific Ocean.Mineralisation at Oyu Tolgoi is associated with multiple,overlapping,intrusions of late Devonian(~372 to 370 Ma) quartzmonzodiorite intruding Devonian(or older) juvenile,probably intra-oceanic arc-related,basaltic lavas and lesser volcaniclastic rocks,unconformably overlain by late Devonian(~370 Ma) basaltic to dacitic pyroclastic and volcano sedimentary rocks.These quartz-monzodiorite intrusions range from earlymineral porphyritic dykes,to larger,linear,syn-,late- and post-mineral dykes and stocks.Ore was deposited within syn-mineral quartz-monzodiorites,but is dominantly hosted by augite basalts and to a lesser degree by overlying dacitic pyroclastic rocks.Following ore deposition,an allochthonous plate of older Devonian(or pre-Devonian) rocks was overthrust and a post-ore biotite granodiorite intruded at~365 Ma.Mineralisation is characterised by varying,telescoped stages of intrusion and alteration.Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration,mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts.Downward reflux of cooled,late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions,and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks.Uplift,facilitated by syn-mineral longitudinal faulting,brought sections of the porphyry deposit to shallower depths,to be overprinted and upgraded by late stage,shallower,advanced argillic alteration and high sulphidation mineralisation.Key controls on the location,size and grade of the deposit cluster include(i) a long-lived,narrow faulted corridor;(ii) multiple pulses of overlapping intrusion within the same structure;and(iii) enclosing reactive,mafic dominated wall rocks,focussing ore.
基金Projects 2008BAB31B01 supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China50834006 by the National Natural Science Foundation of China
文摘In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.
文摘The process of lignite desulphurization via its treatment by an oxidant(air or air–steam mixture)has been studied.The research objective was useful determination of steam application in oxidative lignite desulphurization.It has been proved that the water steam should be included in the oxidant composition to increase the hydrogen sulphide and combustible constituent content in the gases obtained during the processes under research.The impact of factors which affect the reactions between solid(in our case–lignite)and gaseous reagent(oxidant,i.e.air and or air–steam mixture)upon the research process has been investigated,if these reactions occur in the kinetic area.Such factors are linear rate of oxidant movement and coal grain size.The values of oxidant movement linear rate and coal grain size,which the reaction transfer from pyrite sulphur and organic content of lignite from diffusion into kinetic area occurs by,have been determined.Under these‘‘transfer’’conditions,the values of coefficients of oxidant mass transfer(β,m/s)as well as Sherwood criteria and boiling layer differences have been calculated.
文摘The aim of this study is to apply process mineralogy as a practical tool for further understanding and predicting the flotation kinetics of the copper sulfide minerals. The minerals' composition and association, grain distribution, and liberation within the ore samples were analyzed in the feed, concentrate, and the tailings of the flotation processes with two pulp densities of 25 wt% and 30 wt%. The major copper-bearing minerals identified by microscopic analysis of the concentrate samples included chalcopyrite(56.2 wt%), chalcocite(29.1 wt%),covellite(6.4 wt%), and bornite(4.7 wt%). Pyrite was the main sulfide gangue mineral(3.6 wt%) in the concentrates. A 95% degree of liberation with d_(80) > 80 μm was obtained for chalcopyrite as the main copper mineral in the ore sample. The recovery rate and the grade in the concentrates were enhanced with increasing chalcopyrite particle size. Chalcopyrite particles with a d_(80) of approximately 100 μm were recovered at the early stages of the flotation process. The kinetic studies showed that the kinetic second-order rectangular distribution model perfectly fit the flotation test data. Characterization of the kinetic parameters indicated that the optimum granulation distribution range for achieving a maximum flotation rate for chalcopyrite particles was between the sizes 50 and 55 μm.
文摘Microwave assisted leaching of complex copper sulphide concentrate with ferric chloride was investigated, and its mechanism was analyzed. The results show that the leaching rate by microwave irradiation heating is much faster than that by conventional heating.
基金the funds from Council of Scientific and Industrial Research(CSIR)to National Geophysical Research Institute through the project of MLP 6604-28(CM)Ministry of Earth Sciences(No:MoES/PO(Geosci)/8/2014)
文摘This study reports major, trace, rare earth and platinum group element compositions of lava flows from the Vempalle Formation of Cuddapah Basin through an integrated petrological and geochemical approach to address mantle conditions, magma generation processes and tectonic regimes involved in their formation. Six flows have been identified on the basis of morphological features and systematic three-tier arrangement of vesicular-entablature-colonnade zones. Petrographically, the studied flows are porphyritic basalts with plagioclase and clinopyroxene representing dominant phenocrystal phases.Major and trace element characteristics reflect moderate magmatic differentiation and fractional crystallization of tholeiitic magmas. Chondrite-normalized REE patterns corroborate pronounced LREE/HREE fractionation with LREE enrichment over MREE and HREE. Primitive mantle normalized trace element abundances are marked by LILE-LREE enrichment with relative HFSE depletion collectively conforming to intraplate magmatism with contributions from sub-continental lithospheric mantle(SCLM) and extensive melt-crust interaction. PGE compositions of Vempalle lavas attest to early sulphur-saturated nature of magmas with pronounced sulphide fractionation, while PPGE enrichment over IPGE and higher Pd/Ir ratios accord to the role of a metasomatized lithospheric mantle in the genesis of the lava flows. HFSEREE-PGE systematics invoke heterogeneous mantle sources comprising depleted asthenospheric MORB type components combined with plume type melts. HFSE-REE variations account for polybaric melting at variable depths ranging from garnet to spinel lherzolite compositional domains of mantle. Intraplate tectonic setting for the Vempalle flows with P-MORB affinity is further substantiated by(i) their origin from a rising mantle plume trapping depleted asthenospheric MORB mantle during ascent,(ii) interaction between plume-derived melts and SCLM,(iii) their rift-controlled intrabasinal emplacement through Archeane Proterozoic cratonic blocks in a subduction-unrelated ocean-continent transition zone(OCTZ). The present study is significant in light of the evolution of Cuddapah basin in the global tectonic framework in terms of its association with Antarctica, plume incubation, lithospheric melting and thinning, asthenospheric infiltration collectively affecting the rifted margin of eastern Dharwar Craton and serving as precursors to supercontinent disintegration.
基金Project(2016RS2016) supported by Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources,China
文摘The flotation separation of smithsonite from calcite and quartz using a alkyl diamine ether(GE-609)as the collector was investigated through micro-flotation experiments and the real ore flotation experiments.The results show that GE-609exhibits good collecting capability to three minerals without selectivity.The presence of sodium sulfide enhances the flotation of smithsonite and calcite while inhibits quartz.Moreover,both sodium silicate and sodium hexametaphosphate exhibit good selective inhibition to calcite.The real ore test results show that a zinc concentrate containing23.51%Zn with the recovery of71.02%is obtained in the closed-circuit test.To understand the adsorption of GE-609on smithsonite surface,zeta potential measurement and FTIR analysis were carried out,and the results indicate that the collector GE-609can adsorb on smithsonite surface through both electrostatic adsorption and chemical adsorption,and the presence of sodium sulfide enhances the adsorption of GE-609.
文摘Flotation reagents have a complex behaviour in the beneficiation of base minerals in clayey ores.Interaction effects of reagents on the efficiency of copper flotation for a highly clayey low-grade sulphide ore were investigated using a central composite design.Preliminary results showed that sodium-isopropyl-xanthate(SIPX)and O-isopropyl-N-ethyl-thionocarbamate(IPETC)were found to be the most efficient collectors in the presence of lime as the pH regulator.The effects of dosage of collectors(SIPX and IPETC)and the dosage of methyl-isobutyl-carbonyl(MIBC)as frother on the separation efficiency were evaluated at different pH levels.Based on the analysis of variance(ANOVA),the interaction effects of the collector−pH and collector−frother were significant for the separation efficiency.At the low level of collector dosage,increasing pH from 9 to 11 enhanced copper separation efficiency from 81%to 86%for IPETC and from 77%to 86%for SIPX.Results of ANOVA showed that the maximum copper separation efficiency(88.7%)was obtained at the dosages of 8.6 g/t SIPX,7 g/t IPETC and 20 g/t MIBC at pH 11.Finally,it was concluded that a mixture of SIPX and IPETC collectors was more suitable to treat highly clayey sulphide ores.
基金the AbbasAbad copper mineShahrood University of Technology for their financial support during this research。
文摘Mechanochemical sulfidization of a mixed sulfide/oxide copper ore by co-grinding with sulfur and additives including Mg(NO3)2 and Fe(NO3)3 salts and iron,aluminum and magnesium powders was investigated for the first time.Also,the influence of sulfidization during the wet-milling process was examined on the separation efficiency and recovery of copper in detail.The results demonstrated that co-grinding with sulfur solely had the best flotation performance at the value of 0.5 wt.%and it was attributed to the possible existence of S\\O bonding on copper oxides surfaces.In addition,adding magnesium nitrate salt,magnesium powder,iron nitrate salt and aluminum powder as additive associated with 0.5 wt%sulfur into ball milling caused the flotation improvement at the amounts of 0.2 wt%,0.2 wt%,0.5 wt%and 0.5 wt%,respectively.Also,the effect of grinding time and sulfidization pH with 0.5 wt%sulfur solely was determined and pH s of 7.5 to 8.5 gave the best results.The highest recovery(75.76%)and separation efficiency(63.44%)were achieved at pH of 7.5 and 8.5,respectively.
文摘The Devonian volcano-passive continental margin in southern Altay is a significant volcanogenic massive sulphide metallogenic belt. Acidic volcanism has been dominant on the inner side of the volcano-passive continental margin, i.e., near the old land, resulting in a Pb-Zn metallogenic sub-belt, in which the ore deposits are hosted by sedimentary rocks in volcanic series, as represented by the large Koktal Pb-Zn deposits. In the central part of the margin far away from the old land, bimodal volcanic formations are well developed, forming volcanics-hosted Cu-Zn metallogenic sub-belts, e.g., the large-scale Ashele Cu-Zn deposit. The Qiaoxiahala sub-belt on the outer side of the margin near the ocean ridge is located at the spreading central trough, where ophiolite suites are developed. This type of deposits is rich in gold and copper, similar to the Cyprus-type Fe-Cu-Au metallogenic sub-belt in metallogenic environment (represented by the Qiaoxiahala medium-scale Fe-Cu-Au deposit). From the old land to the ocean, the mineralizing age becomes younger, i.e., from Early Devonian→Early and Middle Devonian→Middle Devonian, forming a complete metallogenic zoning series on the volcano-passive continental margin. Comparative studies show that the massive sulphide deposits distributed on the volcano-passive continental margin are different from those formed under a plate subduction regime and oceanic ridge environment; the former have their unique features and wide distributions, representing a new type of volcanogenic massive sulphide deposits—the Altay type.
基金Projects(50934002,51104011) supported by the National Natural Science Foundation of ChinaProject(IRT0950) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject(20100480200) supported by China Postdoctoral Science Foundation
文摘Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.
文摘The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite〉bomite〉pyritic chalcopyrite〉covellite〉porphyry chalcopyfite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered disso- lution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopy- rite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide CtuFe2S9, resoectivelv. The ability of these oassivation layers was found as Cu4Fe2S9〉Cu4S11〉S8〉iarosite.
基金the results of a project approved and funded by the Ministry of Education,Science and Technology Development of the Republic of Serbia(Project Nos.TR 34004 and TR 34024)the EU FP6 BioMinE project by Bioclear,the Netherlands(European project contract NMP2-CT-2005-500329-1)
文摘Bioleaching of low-grade complex Cu–Zn–Pb–Fe–Ag–Au sulphide concentrate (of Majdanpek ore body, RTB Bor, Serbia) was carried out in an aerated bioleach reactor in the presence of mesophilic mixed bacterial culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans. A mesophilic acidophiles culture was isolated from the acidic solution of the underground copper mine of Bor, Serbia. The nutrient medium was 9K at pH 1.6. 87% of the particles were <10 µm in size, with a pulp density of 8% (w/v). Bioleaching efficiencies of 89% for zinc, 83% for copper, and 68% for iron can be achieved in the examined conditions. Kinetic analysis shows that the change in leaching corresponds to the Spencer-Topley kinetic model for diffusion-controlled topochemical reactions.