期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Laser Linewidth and Spectral Resolution in Infrared Scanning Sum Frequency Generation Vibrational Spectroscopy System
1
作者 魏锋 夏文秀 +3 位作者 胡中进 李雯慧 张纪英 郑万泉 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第2期171-178,I0001,共9页
Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG sys... Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1). 展开更多
关键词 Lineshape calculation sum frequency generation Vibrational spectra Spectralresolution
下载PDF
Methanol Adsorption on TiO2 Film Studied by Sum Frequency Generation Vibrational Spectroscopy
2
作者 冯冉冉 刘安安 +3 位作者 刘烁 施骄健 刘怡 任泽峰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第1期11-16,I0001,共7页
A broadband infrared surface sum frequency generation vibrational spectroscopy (SFG-VS) and an in situ UV excitation setup devoted to studying surface photocatalysis have been constructed. With a home-made compact h... A broadband infrared surface sum frequency generation vibrational spectroscopy (SFG-VS) and an in situ UV excitation setup devoted to studying surface photocatalysis have been constructed. With a home-made compact high vacuum cell, organic contaminants on TiO2 thin film surface prepared by RF magnetron sputtering were in situ removed under 266 nm irradiation in 10 kPa 02 atmosphere. We obtained the methanol spectrum in the CH3 stretching vibration region on TiO2 surface with changing the methanol pressure at room temperature. Features of both molecular and dissociative methanol, methoxy, adsorbed on this surface were resolved. The CH3 symmetric stretching vibration frequency and Fermi resonance of molecular methanol is red-shifted by about 6-8 cm-1 from low to high coverage. Moreover, the recombination of dissociative methanol and H on Surfaces in vacuum was also observed. Our results suggest two equilibria exist: between molecular methanol in the gas phase and that on surfaces, and between molecular methanol and dissociative methanol on surfaces. 展开更多
关键词 Surface sum frequency generation vibrational spectroscopy Surface photo-catalysis TIO2
下载PDF
A Highly Sensitive Femtosecond Time-Resolved Sum Frequency Generation Vibrational Spectroscopy System with Simultaneous Measurement of Multiple Polarization Combinations 被引量:2
3
作者 谈军军 罗毅 叶树集 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第6期671-677,I0002,共8页
Characterization of real-time and ultrafast motions of the complex molecules at surface and interface is critical to understand how interracial molecules function. It requires to develop surface-sensitive, fast-identi... Characterization of real-time and ultrafast motions of the complex molecules at surface and interface is critical to understand how interracial molecules function. It requires to develop surface-sensitive, fast-identification, and time-resolved techniques. In this study, we employ several key technical procedures and successfully develop a highly sensitive femtosecond time-resolved sum frequency generation vibrational spectroscopy (SFG-VS) system. This system is able to measure the spectra with two polarization combinations (ssp and ppp, or psp and ssp) simultaneously. It takes less than several seconds to collect one spectrum. To the best of our knowledge, it is the fastest speed of collecting SFG spectra reported by now. Using the time-resolved measurement, ultrafast vibrational dynamics of the N-H mode of α-helical peptide at water interface is determined. It is found that the membrane environment does not affect the N-H vibrational relaxation dynamics. It is expected that the time-resolved SFG system will play a vital role in the deep understanding of the dynamics and interaction of the complex molecules at surface and interface. Our method may also provide an important technical proposal for the people who plan to develop time-resolved SFG systems with simultaneous measurement of multiple polarization combinations. 展开更多
关键词 Femtosecond time-resolved sum frequency generation vibrational spectroscopy Ultrafast vibrational dynamics Multiple polarization combination measurement CHIRAL
下载PDF
A modeling analysis of molecular orientation at interfaces by polarization-dependent sum frequency generation vibrational spectroscopy
4
作者 Xia Li Günther Rupprechter 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1655-1667,共13页
Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization depen... Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices. 展开更多
关键词 sum frequency generation spectroscopy Surface/interface Heterogeneous catalysis Molecular orientation Refractive index Incidence angles Molecular hyperpolarizability ratio
下载PDF
Sensibility to Changes of Vibrational Modes of Excited Electron: Sum Frequency Signals Versus Difference Frequency Signals
5
作者 GU An-Na LIANG Xian-Ting 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第3期506-512,共7页
In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signal... In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively. 展开更多
关键词 difference frequency signals sum frequency signals response functions SUSCEPTIBILITY
下载PDF
Vibrational Spectra and Adsorption of Trisiloxane Superspreading Surfactant at Air/Water Interface Studied with Sum Frequency Generation Vibrational Spectroscopy
6
作者 Jun Feng Dan Wu +2 位作者 Jia Wen Shi-lin Liu Hong-fei Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第4期314-323,共10页
The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si- O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surfac... The C-H stretch vibrational spectra of the trisiloxane superspreading surfactant Silwet L-77 ((CH3)3Si- O-Si(CH3)(C3H6)(OCH2CH2)7-8OCH3)-O-Si(CH3)3) at the air/water interface are measured with the surface Sum Frequency Generation Vibrational Spectroscopy (SFG-VS). The spectra are dominated with the features from the -Si-CH3 groups around 2905 cm^-1 (symmetric stretch or SS mode) and 2957 ^-1 (mostly the asymmetric stretch or AS mode), and with the weak but apparent contribution from the -O-CH2- groups around 2880 ^-1 (symmetric stretch or SS mode). Comparison of the polarization dependent SFG spectra below and above the critical aggregate or micelle concentration (CAC) indicates that the molecular orientation of the C-H related molecular groups remained unchanged at different surface densities of the Silwet L-77 surfactant. The SFG-VS adsorption isotherm suggested that there was no sign of Silwet L-77 bilayer structure formation at the air/water interface. The Gibbs adsorption free energy of the Silwet surfactant to the air/water interface is -42.2±0.8kcal/mol, indicating the unusually strong adsorption ability of the Silwet L-77 superspreading surfactant. 展开更多
关键词 Trisiloxane surfactant Superspreader Surface adsorption sum frequency generation vibrational spectroscopy
下载PDF
Interaction between Potassium Phosphate Buffer Solution and Modeling Cell Membrane Investigated by Sum Frequency Generation Vibrational Spectroscopy
7
作者 Weilai Yang Kangzhen Tian Shuji Ye 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第4期-,共7页
关键词 sum frequency generation Potassium phosphate buffer Lipid bilayer Toroidal pore INTERACTION
下载PDF
Sum Frequency Generation Vibrational Spectra of Perovskite Nanocrystals at the Single-Nanocrystal and Ensemble Levels
8
作者 Renlong Zhu Quanbing Pei +2 位作者 Junjun Tan Xiaoxuan Zheng Shuji Ye 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第5期738-746,I0001-I0003,I0011,共13页
Determination of molecular structures of organicinorganic hybrid perovskite(OIHP)nanocrystals at the single-nanocrystal and ensemble levels is essential to understanding the mechanisms responsible for their size-depen... Determination of molecular structures of organicinorganic hybrid perovskite(OIHP)nanocrystals at the single-nanocrystal and ensemble levels is essential to understanding the mechanisms responsible for their size-dependent optoelectronic properties and the nanocrystal assembling process,but its detection is still a bit challenging.In this study,we demonstrate that femtosecond sum frequency generation(SFG)vibrational spectroscopy can provide a highly sensitive tool for probing the molecular structures of nanocrystals with a size comparable to the Bohr diameter(∼10 nm)at the single-nanocrystal level.The SFG signals are monitored using the spectral features of the phenyl group in(RMBA)PbBr_(3) and(R-MBA)_(2)PbI_(4) nanocrystals(MBA:methyl-benzyl-ammonium).It is found that the SFG spectra exhibit a strong resonant peak at 3067±3 cm^(−1)(ν2 mode)and a weak shoulder peak at 3045±4 cm^(−1)(ν_(7a) mode)at the ensemble level,whereas a peak of theν2 mode and a peak at 3025±3 cm^(−1)(ν20b mode)at the single-nanocrystal level.The nanocrystals at the single-nanocrystal level tend to lie down on the surface,but stand up as the ensemble number and the averaged sizes increase.This finding may provide valuable information on the structural origins for size-dependent photo-physical properties and photoluminescence blinking dynamics in nanocrystals. 展开更多
关键词 PEROVSKITE Single nanocrystal sum frequency generation vibrational spectroscopy Size-dependent property
下载PDF
Absolute Orientation of Molecules with Competing Hydrophilic Head Groups at the Air/Water Interface Probed with Sum Frequency Generation Vibrational Spectroscopy
9
作者 Feng Wang Zhi Huang +1 位作者 Zhi-feng Cui Hong-fei Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第2期197-203,共7页
The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute or... The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface. 展开更多
关键词 sum frequency generation vibrational spectroscopy Air/water interface Molecule orientation p-cyanophenol
下载PDF
Sum Frequency Spectroscopy Studies on Cell Membrane Fusion Induced by Divalent Cations
10
作者 Xiao-feng Han Wen-hua Sun +1 位作者 Shu-jing Wang Xiao-lin Lu 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第6期883-892,I0072,共11页
Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of diva... Cell membrane fusion is a fundamental biological process involved in a number of cellular living functions. Regarding this, divalent cations can induce fusion of the lipid bilayers through binding and bridging of divalent cations to the charged lipids, thus leading to the cell membrane fusion. However, the elaborate mechanism of cell membrane fusion induced by divalent cations is still needed to be elucidated.Here, surface/interface sensitive sum frequency generation vibrational spectroscopy(SFG-VS) and dynamic light scattering(DLS) were applied in this research to study the responses of phospholipid monolayer to the exposure of divalent metal ions i.e.Ca^(2+)and Mg^(2+). According to the particle size distribution results measured by DLS experiments, it was found that Ca^(2+)could induce inter-vesicular fusion while Mg^(2+)could not. An octadecyltrichlorosilane self-assembled monolayer(OTS SAM)-lipid monolayer system was designed to model the cell membrane for the SFG-VS experiment. Ca^(2+)could interact with the lipid POO_(2)^(-)head groups more strongly, resulting in cell membrane fusion more easily, in comparison with Mg^(2+). No specific interaction between the two metal cations and the C=O groups was observed. However, the C=O orientations changed more after Ca^(2+)-PO2-binding than Mg^(2+)mediation on lipid monolayer. Meanwhile, Ca^(2+)could induce dehydration of the lipids(which should be related to the strong Ca^(2+)-PO_(2)^(-)interaction), leading to the reduced hindrance for cell membrane fusion. 展开更多
关键词 Cell membrane fusion sum frequency generation vibrational spectroscopy Dynamic light scattering Lipid monolayer
下载PDF
Real-Time Observation of Protein Transport across Membranes by Femtosecond Sum Frequency Generation Vibrational Spectroscopy
11
作者 Junjun Tan Chuanzhao Li +1 位作者 Jiahui Zhang Shuji Yea 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期523-528,615,共7页
Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biornolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dyna... Characterization of conformation kinetics of proteins at the interfaces is crucial for understanding the biornolecular functions and the mechanisms of interfacial biological action. But it requires to capture the dynamic structures of proteins at the interfaces with suffi- cient structural and temporal resolutions. Here, we demonstrate that a ferntosecond sum frequency generation vibrational spectroscopy (SFG-VS) system developed by our group provides a powerful tool for monitoring the real-tirne peptide transport across the membranes with time resolution of less than one second. By probing the real-time SFG signals in the arnide I and arnide A bands as WALP23 interacts with DMPG lipid bilayer, it is found that WALP23 is initially absorbed at the gel-phase DMPG bilayer with a random coil structure. The absorption of WALP23 on the surface leads to the surface charge reversal and thus changes the orientation of rnembrane-bound water. As the DMPG bilayer changes from gel phase into fluid phase, WALP23 inserts into the fluid-phase bilayer with its N-terminal end moving across the membrane, which causes the membrane dehydration and the transition of WALP23 conformation from random coil to mixed helix/loop structure and then to pure α-helical structure. The established system is ready to be employed in characterizing other interracial fast processes, which will be certainly helpful for providing a clear physical picture of the interracial phenomena. 展开更多
关键词 Ferntosecond sum frequency generation Peptide transport across membrane Real time Kinetic conformation
下载PDF
Optical Sum Frequency Generation Spectroscopy of Cracked Non-Glutinous Rice (Oryza sativa L.) Kernels
12
作者 Wataru Kouyama Takahiro Nishida +3 位作者 Khuat Thi Thu Hien Goro Mizutani Hiroshi Hasegawa Hiroaki Miyamura 《Journal of Biomaterials and Nanobiotechnology》 2016年第1期13-18,共6页
In order to study the correlation between the cracking of rice (Oryza sativa L.) kernels and the molecular structure of the amylopectin in them, we attempted optical sum frequency generation (SFG) spectroscopy in the ... In order to study the correlation between the cracking of rice (Oryza sativa L.) kernels and the molecular structure of the amylopectin in them, we attempted optical sum frequency generation (SFG) spectroscopy in the C-H stretching vibration region for normal and cracked japonica non-glutinous rice kernels. The samples were Koshihikari and Nipponbare. In Nipponbare, the width of the SFG spectrum peak at 2915 cm<sup>- 1</sup> of the cracked rice kernels was broader than that of the normal ones, while for Koshihikari there was no clear difference. The width of the 2915 cm<sup>- 1</sup> peak is suggested to originate from the variety of the higher-order structure of the saccharide chains in amylopectin. Although this is a tentative result, this method is shown to have a potential of serving for preventing the cracking of the rice kernels. 展开更多
关键词 Rice Kernels Cracking in Hot Weather Optical sum frequency Generation (SFG) AMYLOPECTIN Non-Glutinous Rice
下载PDF
High-power,narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals
13
作者 Zhitao Zhang Hanghang Yu +3 位作者 Sheng Chen Zheng Li Xiaobo Heng Hongwen Xuan 《Advanced Photonics Nexus》 2024年第2期107-113,共7页
A 60-mW solid-state deep ultraviolet(DUV)laser at 193 nm with narrow linewidth is obtained with two stages of sum frequency generation in LBO crystals.The pump lasers,at 258 and 1553 nm,are derived from a homemade Yb-... A 60-mW solid-state deep ultraviolet(DUV)laser at 193 nm with narrow linewidth is obtained with two stages of sum frequency generation in LBO crystals.The pump lasers,at 258 and 1553 nm,are derived from a homemade Yb-hybrid laser employing fourth-harmonic generation and Er-doped fiber laser,respectively.The Yb-hybrid laser,finally,is power scaling by a 2 mm×2 mm×30 mm Yb:YAG bulk crystal.Accompanied by the generated 220-mW DUV laser at 221 nm,the 193-nm laser delivers an average power of 60 mW with a pulse duration of 4.6 ns,a repetition rate of 6 kHz,and a linewidth of∼640 MHz.To the best of our knowledge,this is the highest power of 193-and 221-nm laser generated by an LBO crystal ever reported as well as the narrowest linewidth of 193-nm laser by it.Remarkably,the conversion efficiency reaches 27%for 221 to 193 nm and 3%for 258 to 193 nm,which are the highest efficiency values reported to date.We demonstrate the huge potential of LBO crystals for producing hundreds of milliwatt or even watt level 193-nm laser,which also paves a brand-new way to generate other DUV laser wavelengths. 展开更多
关键词 193 nm solid-state laser deep ultraviolet LBO crystal sum frequency mixing narrow linewidth
下载PDF
Methanol Perturbing Modeling Cell Membranes Investigated using Linear and Nonlinear Vibrational Spectroscopy 被引量:1
14
作者 田康振 李红春 叶树集 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期27-34,I0003,共9页
Cell membranes play a crucial role in many biological functions of cells. A small change in the composition of cell membranes can strongly influence the functions of membrane-associated proteins, such as ion and water... Cell membranes play a crucial role in many biological functions of cells. A small change in the composition of cell membranes can strongly influence the functions of membrane-associated proteins, such as ion and water channels, and thus mediate the chemical and physical balance in cells. Such composition change could originate from the introduction of short-chain alcohols, or other anesthetics into membranes. In this work, we have applied sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to investigate interaction between methanol and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) lipid bilayers. Lipid's hydrocarbon interior is deuterated while its head group is hydrogenated. At the same time, CH3 symmetric stretch from methanol and lipid head amine group has different frequency, thus we can distinguish the behaviors of methanol, lipid head amine group, and lipid hydrocarbon interior. Based on the spectral feature of the bending mode of the water molecules replaced by methanol, we determined that the methanol molecules are intercalated into the region between amine and phosphate groups at the lipid hydrophilic head. The dipole of CH3 groups of methanol and lipid head, and the water O-H M1 adopt the same orientation directions. The introduction of methanol into the lipid hydrophilic head group can strongly perturb the entire length of the alkyl chains, resulting that the signals of CD2 and CD3 groups from both leaflets can not cancel each other. 展开更多
关键词 sum frequency generation vibrational spectroscopy Cell membrane METHANOL INTERACTION MECHANISM
下载PDF
The dehydration dynamics of a model cell membrane induced by cholesterol analogue 6-ketocholestanol investigated using sum frequency generation vibrational spectroscopy 被引量:1
15
作者 Sulan Ma Kangzhen Tian Shuji Ye 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第7期1176-1186,共11页
Dehydration of a surface is the first step for the interaction between biomolecules and the surface. In this study, we systemati- cally investigated the influence of cholesterol analog 6-ketocholestanol (6-KC) on th... Dehydration of a surface is the first step for the interaction between biomolecules and the surface. In this study, we systemati- cally investigated the influence of cholesterol analog 6-ketocholestanol (6-KC) on the dehydration of model cell membrane, using sum frequency generation vibrational spectroscopy. In pure DI water environment, two separate dehydration dynamic components were observed in neutrally charged and isotopically labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and positively charged 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine(chloride salt) (DMEPC) bilayer: a large-amplitude fast component and a small-amplitude slow component, which originated from the water molecules with a weak and a strong water-membrane bound strengths, respectively. Dehydration of a negatively charged mixed DMPC/DMPG bilayer lead to the membrane-bound water being reorganized to ordered structures quickly. It is evident that the water-membrane bound strengths depend largely on the charge status of the lipid and has an order of neutrally charged membrane〈〈positively charged mem- brane〈〈negatively charged membrane. In an ionic environment, KC1 solution can not only dehydrate DMPC bilayer, but also prevent the 6-KC fiom further dehydrating this model cell membrane. We observed that the dehydration dynamics behavior of DMPC bilayer in the presence of the chaotropic anions is similar to that of the negatively charged DMPG bilayer because of the penetration of chaotropic anions into the DMPC bilayer. The degree of dehydration difficulty in kosmotropic anions fol- lows a Hofmeister series and linearly correlates with the hydration Gibbs free energy of the anions. Our results provide a molecular basis for the interpretation of the Hofmeister effect of kosmotropic anions on ion transport proteins. 展开更多
关键词 membrane dehydration sum frequency generation membrane-bound water membrane dipole potential Hofmeistereffect
原文传递
Orientation and Structure of Ionic Liquid Cation at Air/[bmim][BF4] Aqueous Solution Interface 被引量:1
16
作者 Gang-hua Deng Xia Li +3 位作者 You-qi Guo Shi-lin Liu Zhou Lu Yuan Guo 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第5期569-575,I0004,共8页
The watermiscible room temperature ionic liquid 1butyl3methylimidazolium tetrafluorob orate ([bmim] [BF4]) is a model system for studying the interactions between ionic liquid and water molecules. In this work the o... The watermiscible room temperature ionic liquid 1butyl3methylimidazolium tetrafluorob orate ([bmim] [BF4]) is a model system for studying the interactions between ionic liquid and water molecules. In this work the orientational structure of the low concentrated aqueous solution of [bmim] [BF4] at the air/liquid interface was investigated by sum frequency gener ation vibrational spectroscopy. It has been found that at very low concentrations, the butyl chain exhibited a significant gauche defect, indicating a disordered conformation; and the cation ring oriented with a fairly small tilting angle at the surface. When the concentration increased, the cation ring tended to lie flat at the surface, and the gauche defects of the butyl chain decreased due to the intermolecular chainchain interactions and the consequent more ordered interfacial molecular arrangement. Additionally, the antisymmetric stretching mode in the PPP and SPS spectra exhibited a peak shift, showing that there exists more than one kind of orientation or chemical environment for the butyl CH3 group. These results may shed new light on understanding the surface behavior of watermiscible ionic liquids as well as the imidazolium based surfactants. 展开更多
关键词 sum frequency generation vibratinal spectroscopy Ionic liquid Aqueous solu-tion INTERFACE ORIENTATION
下载PDF
Ordering effects of cholesterol on sphingomyelin monolayers investigated by high-resolution broadband sum-frequency generation vibrational spectroscopy 被引量:1
17
作者 Yiyi Li Rongjuan Feng +3 位作者 Lu Lin Minghua Liu Yuan Guo Zhen Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期357-360,共4页
This report investigated the ordering of the alky chain of sphingomyelin (SMs) monolayers induced by cholesterol at the air/water interface using high-resolution broadband sum frequency generation vibrational spectr... This report investigated the ordering of the alky chain of sphingomyelin (SMs) monolayers induced by cholesterol at the air/water interface using high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of the three nature sphingomyelin/cholesterol mixture monolayers with two concentrations of the cholesterol at the air/water interface are performed under different polarization combination. A new resolved CH2 symmetric stretching (d+, ~2834 cm-1) and the CH3 symmetric stretching (r+, ~2874 cm-1) mode are applied to characterize the conformational order in the sphingomyelin/cholesterol mixture monolayers. It was found that the cholesterol make the sphingosine backbones more conformational order. During this process, the conformational order of the N-linked acyl chain remains unaltered. Moreover, the sphingosine backbones of SMs have much larger contributions to gauche defects of SMs than one in the N-linked acyl chain. These results presented here not only shed lights on understanding of the interactions of sphingomyelin molecules with cholesterol molecules at interface but also demonstrates the ability of HR-BB-SFG to probe such complicated molecular systems. 展开更多
关键词 Sphingomyelin Cholesterol Ordering effect Air/liquid interface High-resolution broadband sum frequency generation Vibrational spectroscopy
原文传递
Surface of room temperature ionic liquid [bmim][PF_6] studied by polarization- and experimental configuration-dependent sum frequency generation vibrational spectroscopy
18
作者 Ganghua Deng Youqi Guo +4 位作者 Xia Li Zhen Zhang Shilin Liu Zhou Lu Yuan Guo 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第3期439-447,共9页
Understanding and control of the surface properties such as molecular orientations are of great importance in numerous applications of ionic liquids. However, there remain discrepancies among the previous experimental... Understanding and control of the surface properties such as molecular orientations are of great importance in numerous applications of ionic liquids. However, there remain discrepancies among the previous experimental and theoretical studies on the surface orientation and structures of room temperature ionic liquids(RTIL) systems. In this article, the orientation of 1-butyl-3-methylimidazolium([bmin]) cation at the air/liquid interface of a characteristic RTIL, 1-butyl-3-methylimidazolium hexafluorophosphate([bmim][PF6]), was investigated by the sum frequency generation vibrational spectroscopy(SFG-VS). Detailed polarization and experimental configuration analyses of the SFG-VS spectra showed the possibility of a small spectral splitting in the CH3 symmetric stretching region, which can be further attributed to the probable existence of multiple orientations for the interfacial [bmim] cations. In addition, the(N)–CH3 vibrations were absent, ruling out the prediction by several recent molecular dynamics simulations which state that portions of the [bmim] cations orient with a standing-up(N)–CH3 group at the ionic liquid surface. Hence, new realistic theoretical models have to be developed to reflect the complex nature of the ionic liquid surface. 展开更多
关键词 ionic liquid sum frequency generation vibrational spectroscopy interface ORIENTATION
原文传递
Film Thickness and Surface Plasmon Tune the Contribution of SFG Signals from Buried Interface and Air Surface
19
作者 Liang Zhang Junjun Tan +1 位作者 Quanbing Pei Shuji Ye 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期532-539,I0078,共9页
Sum frequency generation vibrational spectroscopy(SFG-VS)is a powerful technique for determining molecular structures at both buried interface and air surface.Distinguishing the contribution of SFG signals from buried... Sum frequency generation vibrational spectroscopy(SFG-VS)is a powerful technique for determining molecular structures at both buried interface and air surface.Distinguishing the contribution of SFG signals from buried interface and air surface is crucial to the applications in devices such as microelectronics and bio-tips.Here we demonstrate that the SFG spectra from buried interface and air surface can be differentiated by controlling the film thickness and employment of surface-plasmon enhancement.Using substrate-supported PMMA(poly(methyl methacrylate))films as a model,we have visualized the variations in the contribution of SFG signals from buried interface and air surface.By monitoring carbonyl and C-H stretching groups,we found that SFG signals are dominated by the moieties(-CH2,-CH3,-OCH3 and C=O)segregated at the PMMA/air surface for the thin films while they are mainly contributed by the groups(-OCH3 and C=O)at the substrate/PMMA buried interface for the thick films.At the buried interface,the tilt angle of C=O decreases from65°to 43°as the film preparation concentration increases;in contrast,the angles at the air surface fall in the range from 38°to 21°.Surface plasmon generated by gold nanorods can largely enhance SFG signals,particularly the signals from the buried interface. 展开更多
关键词 sum frequency generation Surface structure Buried interface Poly(methyl methacrylate) Surface plasmon
下载PDF
Quantitative Interpretation of Polarization SFG Vibrational Spectra of Air/Methanol Interface
20
作者 Hui Wu Wen-kai Zhang +2 位作者 Wei Gan Zhi-feng Cui Hong-fei Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第3期187-189,共3页
Even though in IR and Raman spectra of liquid methanol there is always an apparent feature for the asymmetric stretching mode of the CH3 group around 2970 cm^-1, this feature has not been observed in the Sum Frequency... Even though in IR and Raman spectra of liquid methanol there is always an apparent feature for the asymmetric stretching mode of the CH3 group around 2970 cm^-1, this feature has not been observed in the Sum Frequency Generation Vibrational Spectroscopy (SFG-VS) in any polarizations from the air/methanol interface. Here we present a treatment based on a corrected bond additivity model to quantitatively interpret the SFG-VS of the air/methanol interface from the IR and Raman spectra of liquid methanol. 展开更多
关键词 sum frequency generation Bond additivity model Raman polarizability
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部