期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ADMISSIBLE WAVELETS ON THE PRODUCT HEISENBERG GROUP H_n
1
作者 何建勋 彭立中 《Acta Mathematica Scientia》 SCIE CSCD 1998年第S1期58-67,共10页
Let H. be the n-direct proded of Heisenbery group H, P the affine group of Hn. Then P ho a natural unitary representation U on L2(Hn). In this paper,the direct sum decomposition of irreducible invariant closed subspac... Let H. be the n-direct proded of Heisenbery group H, P the affine group of Hn. Then P ho a natural unitary representation U on L2(Hn). In this paper,the direct sum decomposition of irreducible invariant closed subspaces under unitary representation U for L2(Hn) is given. The restrictins of U on these subspaces are square-integrable. The charactedsation of admissible condition is obtained in ierms of the Fourier transform. By seleting appropriately an orthogonal wavelet basis and the wavelet transform,the authors obtain the orthogonal direct chin decomposinon of function space L2(P,dμl). 展开更多
关键词 Admissible condition Wavelet transform Heisenbery group Orthogonal dir4ect sum decomposition Generalized upper half-plance
下载PDF
1-GENERATOR QUASI-CYCLIC CODES 被引量:3
2
作者 Junying PEI Xuejun ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第4期554-561,共8页
This paper discusses the enumeration of 1-generator quasi-cyclic codes and describes an algorithm which will obtain one, and only one, generator for each 1-generator quasi-cyclic code.
关键词 Direct sum decomposition IDEMPOTENT quasi-cyclic code.
原文传递
Fractional Fourier transform on R^(2)and an application
3
作者 Yue ZHANG Wenjuan LI 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第6期1181-1200,共20页
We focus on the L^(p)(R^(2))theory of the fractional Fourier transform(FRFT)for 1≤p≤2.In L^(1)(R^(2)),we mainly study the properties of the FRFT via introducing the two-parameter chirp operator.In order to get the p... We focus on the L^(p)(R^(2))theory of the fractional Fourier transform(FRFT)for 1≤p≤2.In L^(1)(R^(2)),we mainly study the properties of the FRFT via introducing the two-parameter chirp operator.In order to get the pointwise convergence for the inverse FRFT,we introduce the fractional convolution and establish the corresponding approximate identities.Then the well-defined inverse FRFT is given via approximation by suitable means,such as fractional Gauss means and Able means.Furthermore,if the signal F_(α,β)f is received,we give the process of recovering the original signal f with MATLAB.In L^(2)(R^(2)),the general Plancherel theorem,direct sum decomposition,and the general Heisenberg inequality for the FRFT are obtained. 展开更多
关键词 Fractional Fourier transform(FRFT) inverse fractional Fourier transform signal recovery direct sum decomposition general Heisenberg inequality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部