This study describes how one can construct sets of composite natural numbers as tensorial products of the vectors created with the natural powers of prime numbers.
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli...Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.展开更多
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi...Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.展开更多
After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first...After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.展开更多
In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, ...In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.展开更多
This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or u...This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.展开更多
寻找求sum from i=1 to n i^k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n^(k+1)=(k+1)[integral from n=0 to n(S^k(x)dx)-n integral from n=-1 to 0 (S^k(x)ds)。其中...寻找求sum from i=1 to n i^k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n^(k+1)=(k+1)[integral from n=0 to n(S^k(x)dx)-n integral from n=-1 to 0 (S^k(x)ds)。其中S^k(x)是S_n^k=sum from i=1 to i^k的派生函数。展开更多
Let <em>p</em> be an odd prime, the harmonic congruence such as <img alt="" src="Edit_843b278d-d88a-45d3-a136-c30e6becf142.bmp" />, and many different variations and generalizatio...Let <em>p</em> be an odd prime, the harmonic congruence such as <img alt="" src="Edit_843b278d-d88a-45d3-a136-c30e6becf142.bmp" />, and many different variations and generalizations have been studied intensively. In this note, we consider the congruences involving the combination of alternating harmonic sums, <img alt="" src="Edit_e97d0c64-3683-4a75-9d26-4b371c2be41e.bmp" /> where P<em><sub>P </sub></em>denotes the set of positive integers which are prime to <em>p</em>. And we establish the combinational congruences involving alternating harmonic sums for positive integer <em>n</em>=3,4,5.展开更多
文摘This study describes how one can construct sets of composite natural numbers as tensorial products of the vectors created with the natural powers of prime numbers.
文摘Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
文摘Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.
文摘After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.
基金the National Natural Science Foundation of China,Grant No 10471064 and 10771103
文摘In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.
文摘This work illustrates the steady state, two dimensional natural convective flow and heat transfer features in square enclosure containing heated hexagonal block maintained either at constant wall temperature(CWT) or uniform heat flux(UHF) thermal conditions. Governing equations(mass, momentum and energy) are solved by using finite volume method(FVM) with 3rd order accurate QUICK discretization scheme and SIMPLE algorithm for range of field pertinent parameters such as, Grashof number(10~3≤ Gr ≤ 10~6), Prandtl number(1 ≤ Pr ≤ 100) and power law index(0.5 ≤ n ≤ 1.5). The analysis of momentum and heat transfer characteristics are delineated by evolution of streamlines, isotherms, variation of average Nusselt number value and Colburn factor for natural convection(j_(nH)). A remarkable change is observed on fluid flow and thermal distribution pattern in cavity for both thermal conditions. Nusselt number shows linear variation with Grashof and Prandtl numbers; while rate of heat transfer by convection decreases for power law index value. Higher heat transfer rate can be achieved by using uniform heat flux condition. A Nusselt number correlation is developed for possible utilization in engineering/scientific design purpose.
文摘寻找求sum from i=1 to n i^k值的方法,研究得不浅[1-9]都有介绍。这里仅用微积分的最基本知识推出较简便的自然数幂之和的求值递推公式:S_n^(k+1)=(k+1)[integral from n=0 to n(S^k(x)dx)-n integral from n=-1 to 0 (S^k(x)ds)。其中S^k(x)是S_n^k=sum from i=1 to i^k的派生函数。
文摘Let <em>p</em> be an odd prime, the harmonic congruence such as <img alt="" src="Edit_843b278d-d88a-45d3-a136-c30e6becf142.bmp" />, and many different variations and generalizations have been studied intensively. In this note, we consider the congruences involving the combination of alternating harmonic sums, <img alt="" src="Edit_e97d0c64-3683-4a75-9d26-4b371c2be41e.bmp" /> where P<em><sub>P </sub></em>denotes the set of positive integers which are prime to <em>p</em>. And we establish the combinational congruences involving alternating harmonic sums for positive integer <em>n</em>=3,4,5.