Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamm...Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.展开更多
The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve...The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve the angular resolution of wideband monopulse radar.The range cells containing resolv-able scattering points are detected in the wideband mode,and these range cells are adopted to estimate part of the target parameters by algorithms of low computational requirement.Then,the likelihood function of the echo is constructed in the narrow-band mode to estimate the rest of the parameters,and the parameters estimated in the wideband mode are employed to reduce computation and enhance estimation accuracy.Simu-lation results demonstrate that the proposed algorithm has higher estimation accuracy and lower computational complexity than the current algorithm and can avoid the risk of model mis-match.展开更多
A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the ori...A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly. An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam, respectively. The optimal weight vector can be obtained after convergence. The required computational complexity is evaluated for the proposed technique, which is on the order of O(N) and less than that of the conventional LCMV method. The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced. This scheme is easy to be implemented on a distributed computer/digital signal processor (DSP) system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array. Then, the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations. Compared with some recent adaptive monopulse estimation methods, a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.展开更多
In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo si...In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.展开更多
To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single e...To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.展开更多
The near field distribution and far field pattern of a monopulse ring focus shaped reflector antenna are studied. The four fold integral appearing in the formulation by using PO method is converted into a triple i...The near field distribution and far field pattern of a monopulse ring focus shaped reflector antenna are studied. The four fold integral appearing in the formulation by using PO method is converted into a triple integral for the near field case and a double integral for the far field case by applying the Fourier series expansion. Good agreements have been achieved between theoretical and experimental results.展开更多
Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio. A novel algorithm is proposed to estimate the directions of two steady targets with two pul...Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio. A novel algorithm is proposed to estimate the directions of two steady targets with two pulses. The algorithm has a closedform expression and its variance is derived at high signal-to-noise ratios(SNRs). Furthermore, the pulse pair selection criterion and the estimation method with multiple pulses are given. Finally, some numerical results are shown to validate the proposed algorithm and the effect of slight target fluctuations is tested.展开更多
A monopulse angle measurement method for polarization array radar is studied in this paper.The receiving signal model is established and then a monopulse angle measurement method based on virtual polarization matching...A monopulse angle measurement method for polarization array radar is studied in this paper.The receiving signal model is established and then a monopulse angle measurement method based on virtual polarization matching is proposed.To analyze the estimation performance,the Cramer-Rao Lower Bound(CRLB)of angle estimation is derived.Both theoretical analysis and simulation show that:firstly,the proposed method is superior to the traditional angle measurement methods based on the single polarization.Secondly,the performance of the new method is unrelated to the echo polarization.Thirdly,angle estimation of this method is asymptotically optimal.The results show that this method has great potential to be used in polarization array radar.展开更多
Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide ...Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide a high amplitude and phase balance over wide frequency band and no phase delay technique is required for the difference channel. Resonant slot antennas are adopted as the radiating elements since they can be integrated with the sum-difference monopulse comparator in a single layer with a compact size. Two monopulse arrays with 2× 4 and 4×4 slot elements are designed, fabricated, and measured. Measured results show that the proposed antenna arrays have wide bandwidth covering the unlicensed 60-GHz band. The peak sum beam gain is 13.85 dBi for the 2 ×4 element array and 16.24 dBi for the 4×4 element array. The peak difference beam gain is 11.20 dBi for the 2×4 element array and 12.11 dBi for the 4×4 element array and the maximum null depth can reach -40 dB.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
电大尺寸目标的宽带散射回波可看成多个强散射中心的共同作用结果,回波表现为高分辨距离像(high-resolution range profiles,HRRP)的特点。如何利用多个散射中心的回波能量,以提升单脉冲测角的性能是值得深入研究的问题。本文给出的宽...电大尺寸目标的宽带散射回波可看成多个强散射中心的共同作用结果,回波表现为高分辨距离像(high-resolution range profiles,HRRP)的特点。如何利用多个散射中心的回波能量,以提升单脉冲测角的性能是值得深入研究的问题。本文给出的宽带雷达单脉冲测角的最大似然估计(maximum likelihood estimate,MLE)算法,该方法能够积累扩散到多个距离单元的回波能量,从HRRP中获得信噪比(signal to noise ratio,SNR)增益。提出了一种基于回波本身来确定目标距离支集的方法,并在距离支集上实施MLE算法。仿真研究表明:本文所提方法相比于加权平均法和最强点法,能够有效利用距离方向多个散射点的回波能量。MLE算法的均方根误差(root mean square error,RMSE)性能逼近克拉美罗下界(Carmer Rao low bound,CRLB)。展开更多
基金supported by the National Natural Science Foundation of China(60925005)
文摘Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.
文摘The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve the angular resolution of wideband monopulse radar.The range cells containing resolv-able scattering points are detected in the wideband mode,and these range cells are adopted to estimate part of the target parameters by algorithms of low computational requirement.Then,the likelihood function of the echo is constructed in the narrow-band mode to estimate the rest of the parameters,and the parameters estimated in the wideband mode are employed to reduce computation and enhance estimation accuracy.Simu-lation results demonstrate that the proposed algorithm has higher estimation accuracy and lower computational complexity than the current algorithm and can avoid the risk of model mis-match.
基金supported by the National Natural Science Foundation of China(11273017)
文摘A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly. An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam, respectively. The optimal weight vector can be obtained after convergence. The required computational complexity is evaluated for the proposed technique, which is on the order of O(N) and less than that of the conventional LCMV method. The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced. This scheme is easy to be implemented on a distributed computer/digital signal processor (DSP) system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array. Then, the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations. Compared with some recent adaptive monopulse estimation methods, a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.
基金The name of the project that funded this article is 13th Five-Year Plan"equipment pre-research project,the number of this project is 30107030803。
文摘In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.
基金supported by the Science and Technique Commission Foundation of Fujian Province(2018H6023)。
文摘To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.
文摘The near field distribution and far field pattern of a monopulse ring focus shaped reflector antenna are studied. The four fold integral appearing in the formulation by using PO method is converted into a triple integral for the near field case and a double integral for the far field case by applying the Fourier series expansion. Good agreements have been achieved between theoretical and experimental results.
文摘Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio. A novel algorithm is proposed to estimate the directions of two steady targets with two pulses. The algorithm has a closedform expression and its variance is derived at high signal-to-noise ratios(SNRs). Furthermore, the pulse pair selection criterion and the estimation method with multiple pulses are given. Finally, some numerical results are shown to validate the proposed algorithm and the effect of slight target fluctuations is tested.
文摘A monopulse angle measurement method for polarization array radar is studied in this paper.The receiving signal model is established and then a monopulse angle measurement method based on virtual polarization matching is proposed.To analyze the estimation performance,the Cramer-Rao Lower Bound(CRLB)of angle estimation is derived.Both theoretical analysis and simulation show that:firstly,the proposed method is superior to the traditional angle measurement methods based on the single polarization.Secondly,the performance of the new method is unrelated to the echo polarization.Thirdly,angle estimation of this method is asymptotically optimal.The results show that this method has great potential to be used in polarization array radar.
基金This project is supported by the National Basic Research Program of China ("973" Program) under Grant No. 2014CB339900 and the National Natural Science Foundation of China under Grant No. 61372056.
文摘Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide a high amplitude and phase balance over wide frequency band and no phase delay technique is required for the difference channel. Resonant slot antennas are adopted as the radiating elements since they can be integrated with the sum-difference monopulse comparator in a single layer with a compact size. Two monopulse arrays with 2× 4 and 4×4 slot elements are designed, fabricated, and measured. Measured results show that the proposed antenna arrays have wide bandwidth covering the unlicensed 60-GHz band. The peak sum beam gain is 13.85 dBi for the 2 ×4 element array and 16.24 dBi for the 4×4 element array. The peak difference beam gain is 11.20 dBi for the 2×4 element array and 12.11 dBi for the 4×4 element array and the maximum null depth can reach -40 dB.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
文摘电大尺寸目标的宽带散射回波可看成多个强散射中心的共同作用结果,回波表现为高分辨距离像(high-resolution range profiles,HRRP)的特点。如何利用多个散射中心的回波能量,以提升单脉冲测角的性能是值得深入研究的问题。本文给出的宽带雷达单脉冲测角的最大似然估计(maximum likelihood estimate,MLE)算法,该方法能够积累扩散到多个距离单元的回波能量,从HRRP中获得信噪比(signal to noise ratio,SNR)增益。提出了一种基于回波本身来确定目标距离支集的方法,并在距离支集上实施MLE算法。仿真研究表明:本文所提方法相比于加权平均法和最强点法,能够有效利用距离方向多个散射点的回波能量。MLE算法的均方根误差(root mean square error,RMSE)性能逼近克拉美罗下界(Carmer Rao low bound,CRLB)。