The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-So...Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate.展开更多
The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation...The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau.展开更多
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorol...The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.展开更多
[ Objective] The research aimed to study change characteristics and formation cause of summer precipitation abnormality in Loess Plateau of northern Shaanxi Province. [ Method] Based on summer precipitation data at 15...[ Objective] The research aimed to study change characteristics and formation cause of summer precipitation abnormality in Loess Plateau of northern Shaanxi Province. [ Method] Based on summer precipitation data at 15 observation stations in Loess Plateau of northern Shaanxi Province and NCEP/NCAR dataset from 1961 to 2008, change characteristics of summer precipitation in the region were investigated by using linear trend estimation and composite analysis. [Result] Summer rainfall had decrease trend in most parts of northem Shaanxi Province, but had increase trend in western and southern regions. The interannual and interdecadal variations were obvious. It had a large amount of precipitation from the mid- 1970s to the mid-1990s, while summer rainfall had decrease trend after the mid-1990s and increase trend in recent years. In wet years, it was a large positive anomaly zone from western Ural Mountains to northem Lake Baikal at middle and high latitudes, indicating that there was a blocking high over the Ural Mountains, while it was negative anomaly zone from northern Okhotsk Sea to Lake Baikal. From Northwest Pacific Ocean to Bo- hal Sea Bay and North China, it was a wide range of significant positive anomaly zone, which was favorable for Westem Pacific subtropical high ex- tending westward and northward. The analysis in dry years showed opposite circulation configuration. It was " -, +, -" wave train distribution in middle and high latitudes and positive anomaly zone along the Sea of Okhotsk. Western Pacific subtropical high was also by south and east. Major water vapor was from southeast direction in wet years, and abundant water vapor caused more summer rainfall in northern Shaanxi. In dry years, water vapor was from westerly tuming southerly flow. It was weaker and by east. [ Conclusion] The research provided reference for reasonable utilization of summer precipitation in the zone.展开更多
The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been ...The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been investigated with the moderate-resolution imaging spectrometer (MODIS) Terra data (MOD10A2) and precipitation observations. Results show that snow cover percentage (SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency (SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003-2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. Hie multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning,development and cessation of the rain belt in eastern China.展开更多
This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of sim...This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China.展开更多
The impact of warming and wetting on the ecological environment of the Qinghai-Tibet Plateau(TP)under the background of climate change has been a concern of the global scientific community.In this paper,the optimized ...The impact of warming and wetting on the ecological environment of the Qinghai-Tibet Plateau(TP)under the background of climate change has been a concern of the global scientific community.In this paper,the optimized interpolation variational correction approach is adopted for the analysis of monthly high-resolution satellite precipitation products and observations from meteorological stations during the past 20 years.As a result,the corrected precipitation products can not only supplement the“blank area”of precipitation observation stations on the TP,but also improve the accuracy of the original satellite precipitation products.The precipitation over the TP shows different spatial changes in the vegetation growing season,known as the time from May to September.The precipitation in the vegetation growing season and leaf area index(LAI)in the following month show a similar change pattern,indicating a“one-month lag”response of LAI to precipitation on the TP.Further analysis illustrates the influence of water vapor transport driven by the Asian summer monsoon.Water vapor derived from trans-equatorial air flows across the Indian Ocean and Arabian Sea is strengthened,leading to the increase of precipitation in the central and northern TP,where the trend of warming and wetting and the increase of vegetation tend to be more obvious.By contrast,as a result of the weakening trend of water vapor transport in the middle and low levels in southern TP,the precipitation decreases,and the LAI shows a downtrend,which inhibits the warming and wetting ecological environment in this area.展开更多
To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the e...To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the eddy covariance method. The ratio of annual ET to precipitation (P) of meadow ecosystem was about 60%, but varied greatly with the change of season from summer to winter. The annual ET/P in meadow was lower than that in shrub, steppe and wetland ecosystems of this plateau. The incident solar radiation (Rs) received by the meadow was obviously higher than that of lowland in the same latitude; however the ratio of net radiation (Rn) to Rs with average annual value of 0.44 was significantly lower than that in the same latitude. The average annual ET was about 390 mm for 2002-2005, of which more than 80% occurred in growing season from May to September. The energy consumed on the ET was about 44% of net radiation in growing season, which was lower than that of shrub, steppe and wetland on this plateau. This study demonstrates that the Kobresia meadow may prevent the excessive water loss through evapotranspiration from the ecosystem into the atmosphere in comparison to the shrub, steppe and wetland ecosystems of the Qinghai-Tibetan Plateau.展开更多
After defining landslide and debris flow, human activity, and precipitation indices, using with landslide and debris flow disaster data in low-latitude plateau of China, reflecting human activity and precipitation dat...After defining landslide and debris flow, human activity, and precipitation indices, using with landslide and debris flow disaster data in low-latitude plateau of China, reflecting human activity and precipitation data, the influence of human activity and precipitation on mid-long term evolution of landslide and debris flow was studied with the wavelet technique. Results indicate that mid-long evolution of landslide and debris flow disaster trends to increase 0.9 unit every year, and presents obvious stage feature. The abrupt point from rare to frequent periods took place in 1993. There is significant in-phase resonance oscillation between human activity and landslide and debris flow frequency on a scale of 11-16 years, in which the variation of human activity occurs about 0.2-2.8 years before landslide and debris flow variation. Thus, the increase of landslide and debris flow frequency in low latitude plateau of China may be mainly caused by geo-environmental degradation induced by human activity. After the impact of human activity is removed, there is sig- nificant in-phase resonance oscillation between landslide and debris flow frequency and summer rainfall in low-latitude plateau of China in quasi-three-year and quasi-six-year scales, in which the variation of summer precipitation occurs about 0.0-0.8 years before landslide and debris flow variation. Summer precipitation is one of important external causes which impacts landslide and debris flow frequency in low-latitude plateau of China. The mid-long term evolution predicting model of landslide and debris flow disasters frequency in low-latitude plateau region with better fitting and predicting ability was built by considering human activity and summer rainfall.展开更多
In the context of global warming,the extreme summer precipitation over the Tibetan Plateau(TP)has changed significantly.In this study,the summer(June–August)extreme precipitation on the TP was classified into three s...In the context of global warming,the extreme summer precipitation over the Tibetan Plateau(TP)has changed significantly.In this study,the summer(June–August)extreme precipitation on the TP was classified into three spatial types by applying the K-means clustering method to the Third Pole Region long time-series high-resolution(1/30°)precipitation dataset(TPHi Pr,1979–2020).The characteristics of the circulation anomalies and precursors corresponding to the extreme precipitation on the TP in summer during 1979–2020 were investigated.The results showed that the summer extreme precipitation of the TP can be categorized into northwestern(NW),southeastern(SE),and southern Himalayan(HS)types based on extreme precipitation thresholds.The NW and SE types are mainly influenced by anomalous signals in the mid-to-high latitude regions upstream of them,whereas the HS type is controlled by the localized subtropical anomalous circulation.On the 8th day before the onset of the NW type,an anomalous cyclone was observed in the western Atlantic Ocean(60°W,50°N),which triggered the west-to-east quasi-latitudinal propagation of Rossby waves.On the onset day of the NW type,the upper troposphere showed positive-negative-positive geopotential height anomalies along the latitudinal 40°N from the Caspian Sea,the western part of Xinjiang,to the northeastern TP.Moisture entered from the Arabian Sea along the southeastern edge of the anomalous cyclone on the southwestern TP and converged in the northwestern TP.Compared to the NW type,the precursors of the SE type appeared at higher latitudes and were more intense.On the 8th day before the onset of the SE type,an anomalous cyclone occurred near Greenland(60°W,70°N)and excited Rossby waves propagating southeastward.On the onset day of the SE type,the upper troposphere showed negative-positive-negative geopotential height anomalies across Eurasia from the Ural Mountains and the Iranian Plateau to the northern TP in the northwest-southeast direction and entered the southeastern TP from the Bay of Bengal along the southeastern edge of the anomalous cyclone in the southern TP.On the 6th day before the onset of the HS type,the anomalously high pressure in the middle and lower layers of the low-latitude region extended westward,and a significant anticyclonic anomalous circulation occurred on the southern TP on the onset day of the HS type,enabling the delivery of moisture from the Bay of Bengal to the southern foothills of the Himalayas.Additionally,an anomalous cyclone perched in the northeastern TP at a geopotential height of 200 h Pa strengthened westerly winds in the southern TP and contributed to the maintenance of the anticyclonic system on the southern TP.展开更多
The Mongolian Plateau(MP) is located in the eastern part of arid Central Asia(ACA). Climatically, much of the MP is dominated by the westerly circulation and has an arid and semi-arid climate;however, the eastern part...The Mongolian Plateau(MP) is located in the eastern part of arid Central Asia(ACA). Climatically, much of the MP is dominated by the westerly circulation and has an arid and semi-arid climate;however, the eastern part of the MP is also influenced by the East Asian summer monsoon(EASM) and has a humid and semi-humid climate. Several studies have shown that precipitation variability in the MP differs from that in western ACA but is consistent with that in the EASM region. Here we use monthly precipitation data for 1979–2016 to characterize and determine the origin of the summer precipitation variability of the MP and the EASM region. The results show that the MP and the mid-latitude EASM region exhibit a consistent pattern of precipitation variability on interannual and decadal timescales;specifically, the consistent regions are the MP and North and Northeast China. We further investigated the physical mechanisms responsible for the consistent interdecadal precipitation variability between the MP and the mid-latitude EASM region, and found that the mid-latitude wave train over Eurasia, with positive(negative) geopotential height anomalies over the North Atlantic and ACA and negative(positive) geopotential height anomalies over Europe and the MP, is the key factor responsible for the consistency of precipitation variability in the MP and the mid-latitude EASM region. The positive anomalies over the North Atlantic and ACA and negative anomalies over Europe and the MP would enhance the transport of westerly and monsoon moisture to the MP and North and Northeast China. They could also strengthen the Northeast Asian low, enhance the EASM, and trigger the anomalous ascending motion over the MP which promotes precipitation in the MP and in the mid-latitude EASM region. Overall, our results help explain the spatial variations of paleo-precipitation/humidity reconstructions in East Asia and clarify the reasons for the consistency of the regional climate.展开更多
Based on 5 high-precision 230Th dates and 103 stable oxygen isotope ratios (δ18O) obtained from the top 16 mm of a stalagmite collected from Wanxiang Cave,Wudu,Gansu,variation of monsoonal precipita-tion in the moder...Based on 5 high-precision 230Th dates and 103 stable oxygen isotope ratios (δ18O) obtained from the top 16 mm of a stalagmite collected from Wanxiang Cave,Wudu,Gansu,variation of monsoonal precipita-tion in the modern Asian Monsoon (AM) marginal zone over the past 100 years was reconstructed. Comparison of the speleothem δ18O record with instrumental precipitation data at Wudu in the past 50 years indicates a high parallelism between the two curves,suggesting that the speleothem δ18O is a good proxy for the AM strength and associated precipitation,controlled by "amount effect" of the pre-cipitation. Variation of the monsoonal precipitation during the past 100 years can be divided into three stages,increasing from AD 1875 to 1900,then decreasing from AD 1901 to 1946,and increasing again thereafter. This variation is quite similar to that of the Drought/Flooding index archived from Chinese historical documents. This speleothem-derived AM record shows a close association with the Pacific Decadal Oscillation (PDO) between AD 1875 and 1977,with higher monsoonal precipitation corre-sponding to cold PDO phase and vice versa at decadal timescale. The monsoonal precipitation varia-tion is out of phase with the PDO after AD 1977,probably resulting from the decadal climate jump in the north Pacific occurring at around AD 1976/77. These results demonstrate a strong linkage between the AM and associated precipitation and the Pacific Ocean via ocean/atmosphere interaction. This rela-tionship will aid to forecast future hydrological cycle for the AM monsoon region,and to improve forecasting potential of climatic model with observation data from cave.展开更多
Tracking and quantifying the moisture sources of precipitation in different drainage basins in the Tibetan Plateau(TP)help to reveal basin-scale hydrological cycle characteristics under the interactions between the we...Tracking and quantifying the moisture sources of precipitation in different drainage basins in the Tibetan Plateau(TP)help to reveal basin-scale hydrological cycle characteristics under the interactions between the westerlies and Indian summer monsoon(ISM) systems and to improve our understanding on the mechanisms of water resource changes in the ‘Asian Water Tower' under climate changes. Based on a Eulerian moisture tracking model(WAM-2) and three atmospheric reanalysis products(ERA-I, MERRA-2, and JRA-55), the contributions of moisture sources to the precipitation in six major sub-basins in the TP were tracked during an approximately 35-year period(1979/1980–2015). The results showed that in the upper Indus(UI),upper Tarim River(UT), and Qaidam Basin(QB), the moisture sources mainly extended westward along the mid-latitude westerlies to the western part of the Eurasian continent. In contrast, in the Yarlung Zangbo River Basin(YB), inner TP(ITP), and the source area of three eastern rivers(TER, including the Nujiang River, Lancang River, and Yangtze River), the moisture sources extended both westward and southward, but mainly southward along the ISM. In winter and spring, all of the sub-basins were dominated by western moisture sources. In summer, the western sources migrated northward with the zonal movement of the westerlies, and simultaneously the southern sources of the YB, ITP, and TER expanded largely toward the Indian Ocean along the ISM. In autumn, the moisture sources of the UI, UT, and QB shrank to the western sources, and the moisture sources of the YB, ITP, and TER shrank to the central-southern TP and the Indian subcontinent. By quantifying the moisture contributions from multiple sources, we found that the terrestrial moisture dominated in all of the sub-basins, particularly in the UT and QB(62–73%). The oceanic contributions were relatively high in the UI(38–42%) and YB(38–41%). In winter, evaporation from the large western water bodies(such as the Mediterranean, Red Sea, and Persian Gulf) was significantly higher than that from the continental areas. This contributed to the peak(valley) values of the oceanic(terrestrial) moisture contributions to all of the subbasins. In summer, the terrestrial moisture contributions to the UI, UT, and QB reached their annual maximum, but the abundant oceanic moisture transported by the ISM restrained the appearance of land source contribution peaks in the YB, ITP, and TER,resulting in almost equal moisture contributions in the YB from the ocean and land.展开更多
The Marine Isotope Stage(MIS5e)is characterized by a warmer climate than that of the pre-industrial period,and serves as an analog for the Current Warm Period(CWP).However,uncertainties persist regarding its climatic ...The Marine Isotope Stage(MIS5e)is characterized by a warmer climate than that of the pre-industrial period,and serves as an analog for the Current Warm Period(CWP).However,uncertainties persist regarding its climatic stability.Here,we retrieved a stalagmite(WXB075)from Wanxiang Cave in the eastern Qinghai-Tibetan Plateau,and employed abs-olute^(230)Th dating and relative annual layer data to establish a high-precision chronological framework for reconstructing the history of the Asian summer monsoon(ASM)and environmental evolution during early MIS5e with multiple proxies.The findings indicate that the annually laminated stalagmite was formed during Cooling Event 27(C27).The deposition of WXB075 experienced a hiatus(~125.58 ka BP)due to a significant cooling event in the North Atlantic,which may be linked to the unstable climate in the Northern Hemisphere.Additionally,the impact of meltwater discharge in high northern latitudes results in a two-phase evolution of the ASM,i.e.,an initial weaker stage followed by a gradual increase(with exception of deposition hiatus).The climatic instability of ASM is generally characterized by a quasi-60 year cycle that affects vegetation conditions,biological productivity,and karst hydroclimate dynamics.However,the increase in meltwater and decrease in temperature in the Northern Hemisphere have led to a weakened ASM and subsequent reduction in precipitation.Consequently,vegetation degradation above the cave has occurred along with a slowdown of karst hydroclimate.The vegetation conditions,organic matter content,and wet/drought of the karst hydroclimate were affected by both the large-scale monsoon circulation and local environment during extreme weakening(strengthening)of the monsoon when high-frequency climatic events of ASM occurred.A comparison ofδ^(18)O records between early MIS5e and the past 2000 years reveals that the climate during early MIS5e differed significantly from that of CWP,Medieval Warm Period(MWP),and Dark Age Cold Period(DACP)but was similar to Little Ice Age(LIA).Comparison with other geological records from the Northern Hemisphere indicates that climate instability was a widespread phenomenon during MIS5e.The power spectrum analysis of WXB075δ^(18)O reveals significant quasi-60 and 35 a cycles during the early MIS5e,which is consistent with the Atlantic Multidecadal Oscillation(AMO).The comprehensive results demonstrate that the ASM in the early MIS5e was closely linked to solar activity,Intertropical Convergence Zone(ITCZ)position,and Atlantic Meridional Overturning Circulation(AMOC).展开更多
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金This research was funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the Shenzhen Science and Technology Program(JCYJ20210324131810029)+2 种基金the National Natural Science Foundation of China(72293604,42275017)the Guangdong Provincial College Innovation Team Project(060313452101)the Program for scientific research start-up funds of Guangdong Ocean University(R17056).
文摘Precipitation on the Tibetan Plateau(TP)has an important effect on the water supply and demand of the downstream population.Involving recent climate change,the multi-decadal variations of the impact of El Niño-Southern Oscillation(ENSO)events on regional climate were observed.In this work,the authors investigated the changes in summer precipitation over TP during 1950-2019.At the multi-decadal scale,the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s.The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978-2019 accompanied by a discernible escalation in the frequency of El Niño events.This phenomenon induces anomalous perturbations in sea surface temperatures(SST)within the tropical Indo-Pacific region,consequently weakening the atmospheric vapor transport from the western Pacific to the TP.Additionally,conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture.These results bear profound implications for the multi-decadal prediction of the TP climate.
基金CAS Action-plan for West Development, KZCX2-XB2-06-03 National Natural Science Foundation of China, No.30500064
文摘The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau.
基金This work was supported jointly by the Key Innovation Project of the Chinese Academy of Sciences(Grant No.ZKCX2-SW-210)the National Natural Science Foundation of the China(Grant Nos.40375033 and 40175020)the Key National Natural Science Foundation of China(Grant Nos.40231005).
文摘The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.
基金Supported by National Science and Technology Support Plan Project,China ( 2007BAC03A01)
文摘[ Objective] The research aimed to study change characteristics and formation cause of summer precipitation abnormality in Loess Plateau of northern Shaanxi Province. [ Method] Based on summer precipitation data at 15 observation stations in Loess Plateau of northern Shaanxi Province and NCEP/NCAR dataset from 1961 to 2008, change characteristics of summer precipitation in the region were investigated by using linear trend estimation and composite analysis. [Result] Summer rainfall had decrease trend in most parts of northem Shaanxi Province, but had increase trend in western and southern regions. The interannual and interdecadal variations were obvious. It had a large amount of precipitation from the mid- 1970s to the mid-1990s, while summer rainfall had decrease trend after the mid-1990s and increase trend in recent years. In wet years, it was a large positive anomaly zone from western Ural Mountains to northem Lake Baikal at middle and high latitudes, indicating that there was a blocking high over the Ural Mountains, while it was negative anomaly zone from northern Okhotsk Sea to Lake Baikal. From Northwest Pacific Ocean to Bo- hal Sea Bay and North China, it was a wide range of significant positive anomaly zone, which was favorable for Westem Pacific subtropical high ex- tending westward and northward. The analysis in dry years showed opposite circulation configuration. It was " -, +, -" wave train distribution in middle and high latitudes and positive anomaly zone along the Sea of Okhotsk. Western Pacific subtropical high was also by south and east. Major water vapor was from southeast direction in wet years, and abundant water vapor caused more summer rainfall in northern Shaanxi. In dry years, water vapor was from westerly tuming southerly flow. It was weaker and by east. [ Conclusion] The research provided reference for reasonable utilization of summer precipitation in the zone.
基金supported by the National Natural Science Foundation of China(Grant No.41130960)the Project of the China Meteorological Administration(Grant Nos.CCSF201515 and CMAGJ2013M51)
文摘The distribution of winter-spring snow cover over the Tibetan Plateau (TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley (MLYRV) during 2003-2013 have been investigated with the moderate-resolution imaging spectrometer (MODIS) Terra data (MOD10A2) and precipitation observations. Results show that snow cover percentage (SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency (SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003-2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. Hie multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning,development and cessation of the rain belt in eastern China.
基金supported by the National Key Basic Research Program (No. 2007CB411505)the National Natural Science Foundation (No. 40705031)
文摘This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China.
基金the National Key Research and Development Program of China[grant number 2018YFA0606403]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA23090102]the National Natural Science Foundation of China[grant number 41822502].
基金the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)the S&T Development Fund of CAMS(2021KJ022,2021KJ013)。
文摘The impact of warming and wetting on the ecological environment of the Qinghai-Tibet Plateau(TP)under the background of climate change has been a concern of the global scientific community.In this paper,the optimized interpolation variational correction approach is adopted for the analysis of monthly high-resolution satellite precipitation products and observations from meteorological stations during the past 20 years.As a result,the corrected precipitation products can not only supplement the“blank area”of precipitation observation stations on the TP,but also improve the accuracy of the original satellite precipitation products.The precipitation over the TP shows different spatial changes in the vegetation growing season,known as the time from May to September.The precipitation in the vegetation growing season and leaf area index(LAI)in the following month show a similar change pattern,indicating a“one-month lag”response of LAI to precipitation on the TP.Further analysis illustrates the influence of water vapor transport driven by the Asian summer monsoon.Water vapor derived from trans-equatorial air flows across the Indian Ocean and Arabian Sea is strengthened,leading to the increase of precipitation in the central and northern TP,where the trend of warming and wetting and the increase of vegetation tend to be more obvious.By contrast,as a result of the weakening trend of water vapor transport in the middle and low levels in southern TP,the precipitation decreases,and the LAI shows a downtrend,which inhibits the warming and wetting ecological environment in this area.
基金supported by the National Natural Science Foundation of China(31070433)Japan-China Research Cooperative Program(2010DFA31290)supported by the project of Early Detection and Prediction of Climate Warming Based on the Long-Term Monitoring of Alpine Ecosystems on the Tibetan Plateau funded by the Ministry of Environment,Japan
文摘To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the eddy covariance method. The ratio of annual ET to precipitation (P) of meadow ecosystem was about 60%, but varied greatly with the change of season from summer to winter. The annual ET/P in meadow was lower than that in shrub, steppe and wetland ecosystems of this plateau. The incident solar radiation (Rs) received by the meadow was obviously higher than that of lowland in the same latitude; however the ratio of net radiation (Rn) to Rs with average annual value of 0.44 was significantly lower than that in the same latitude. The average annual ET was about 390 mm for 2002-2005, of which more than 80% occurred in growing season from May to September. The energy consumed on the ET was about 44% of net radiation in growing season, which was lower than that of shrub, steppe and wetland on this plateau. This study demonstrates that the Kobresia meadow may prevent the excessive water loss through evapotranspiration from the ecosystem into the atmosphere in comparison to the shrub, steppe and wetland ecosystems of the Qinghai-Tibetan Plateau.
基金supported by National Natural Science Foundation of China(Grant No.U0933603)National Science and Technology Sup-port Program(Grant No.2011BAC09B07)
文摘After defining landslide and debris flow, human activity, and precipitation indices, using with landslide and debris flow disaster data in low-latitude plateau of China, reflecting human activity and precipitation data, the influence of human activity and precipitation on mid-long term evolution of landslide and debris flow was studied with the wavelet technique. Results indicate that mid-long evolution of landslide and debris flow disaster trends to increase 0.9 unit every year, and presents obvious stage feature. The abrupt point from rare to frequent periods took place in 1993. There is significant in-phase resonance oscillation between human activity and landslide and debris flow frequency on a scale of 11-16 years, in which the variation of human activity occurs about 0.2-2.8 years before landslide and debris flow variation. Thus, the increase of landslide and debris flow frequency in low latitude plateau of China may be mainly caused by geo-environmental degradation induced by human activity. After the impact of human activity is removed, there is sig- nificant in-phase resonance oscillation between landslide and debris flow frequency and summer rainfall in low-latitude plateau of China in quasi-three-year and quasi-six-year scales, in which the variation of summer precipitation occurs about 0.0-0.8 years before landslide and debris flow variation. Summer precipitation is one of important external causes which impacts landslide and debris flow frequency in low-latitude plateau of China. The mid-long term evolution predicting model of landslide and debris flow disasters frequency in low-latitude plateau region with better fitting and predicting ability was built by considering human activity and summer rainfall.
基金upported by the National Natural Science Foundation of China(Grant No.41975090)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ20043)+1 种基金the Science and Technology Innovation Program of Hunan Province(Grant No.2022RC1239)the Jiangsu Collaborative Innovation Center for Climate Change in Nanjing University。
文摘In the context of global warming,the extreme summer precipitation over the Tibetan Plateau(TP)has changed significantly.In this study,the summer(June–August)extreme precipitation on the TP was classified into three spatial types by applying the K-means clustering method to the Third Pole Region long time-series high-resolution(1/30°)precipitation dataset(TPHi Pr,1979–2020).The characteristics of the circulation anomalies and precursors corresponding to the extreme precipitation on the TP in summer during 1979–2020 were investigated.The results showed that the summer extreme precipitation of the TP can be categorized into northwestern(NW),southeastern(SE),and southern Himalayan(HS)types based on extreme precipitation thresholds.The NW and SE types are mainly influenced by anomalous signals in the mid-to-high latitude regions upstream of them,whereas the HS type is controlled by the localized subtropical anomalous circulation.On the 8th day before the onset of the NW type,an anomalous cyclone was observed in the western Atlantic Ocean(60°W,50°N),which triggered the west-to-east quasi-latitudinal propagation of Rossby waves.On the onset day of the NW type,the upper troposphere showed positive-negative-positive geopotential height anomalies along the latitudinal 40°N from the Caspian Sea,the western part of Xinjiang,to the northeastern TP.Moisture entered from the Arabian Sea along the southeastern edge of the anomalous cyclone on the southwestern TP and converged in the northwestern TP.Compared to the NW type,the precursors of the SE type appeared at higher latitudes and were more intense.On the 8th day before the onset of the SE type,an anomalous cyclone occurred near Greenland(60°W,70°N)and excited Rossby waves propagating southeastward.On the onset day of the SE type,the upper troposphere showed negative-positive-negative geopotential height anomalies across Eurasia from the Ural Mountains and the Iranian Plateau to the northern TP in the northwest-southeast direction and entered the southeastern TP from the Bay of Bengal along the southeastern edge of the anomalous cyclone in the southern TP.On the 6th day before the onset of the HS type,the anomalously high pressure in the middle and lower layers of the low-latitude region extended westward,and a significant anticyclonic anomalous circulation occurred on the southern TP on the onset day of the HS type,enabling the delivery of moisture from the Bay of Bengal to the southern foothills of the Himalayas.Additionally,an anomalous cyclone perched in the northeastern TP at a geopotential height of 200 h Pa strengthened westerly winds in the southern TP and contributed to the maintenance of the anticyclonic system on the southern TP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41790421 & 41877446)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2018-140)。
文摘The Mongolian Plateau(MP) is located in the eastern part of arid Central Asia(ACA). Climatically, much of the MP is dominated by the westerly circulation and has an arid and semi-arid climate;however, the eastern part of the MP is also influenced by the East Asian summer monsoon(EASM) and has a humid and semi-humid climate. Several studies have shown that precipitation variability in the MP differs from that in western ACA but is consistent with that in the EASM region. Here we use monthly precipitation data for 1979–2016 to characterize and determine the origin of the summer precipitation variability of the MP and the EASM region. The results show that the MP and the mid-latitude EASM region exhibit a consistent pattern of precipitation variability on interannual and decadal timescales;specifically, the consistent regions are the MP and North and Northeast China. We further investigated the physical mechanisms responsible for the consistent interdecadal precipitation variability between the MP and the mid-latitude EASM region, and found that the mid-latitude wave train over Eurasia, with positive(negative) geopotential height anomalies over the North Atlantic and ACA and negative(positive) geopotential height anomalies over Europe and the MP, is the key factor responsible for the consistency of precipitation variability in the MP and the mid-latitude EASM region. The positive anomalies over the North Atlantic and ACA and negative anomalies over Europe and the MP would enhance the transport of westerly and monsoon moisture to the MP and North and Northeast China. They could also strengthen the Northeast Asian low, enhance the EASM, and trigger the anomalous ascending motion over the MP which promotes precipitation in the MP and in the mid-latitude EASM region. Overall, our results help explain the spatial variations of paleo-precipitation/humidity reconstructions in East Asia and clarify the reasons for the consistency of the regional climate.
基金the National Natural Science Foundation of China (NSFC) (Grant No.40471137)the Innovation Team Project of the NSFC (Grant No.40421101)Doctor Station Foundation,Ministry of Education of China (Grant No.20040730025)
文摘Based on 5 high-precision 230Th dates and 103 stable oxygen isotope ratios (δ18O) obtained from the top 16 mm of a stalagmite collected from Wanxiang Cave,Wudu,Gansu,variation of monsoonal precipita-tion in the modern Asian Monsoon (AM) marginal zone over the past 100 years was reconstructed. Comparison of the speleothem δ18O record with instrumental precipitation data at Wudu in the past 50 years indicates a high parallelism between the two curves,suggesting that the speleothem δ18O is a good proxy for the AM strength and associated precipitation,controlled by "amount effect" of the pre-cipitation. Variation of the monsoonal precipitation during the past 100 years can be divided into three stages,increasing from AD 1875 to 1900,then decreasing from AD 1901 to 1946,and increasing again thereafter. This variation is quite similar to that of the Drought/Flooding index archived from Chinese historical documents. This speleothem-derived AM record shows a close association with the Pacific Decadal Oscillation (PDO) between AD 1875 and 1977,with higher monsoonal precipitation corre-sponding to cold PDO phase and vice versa at decadal timescale. The monsoonal precipitation varia-tion is out of phase with the PDO after AD 1977,probably resulting from the decadal climate jump in the north Pacific occurring at around AD 1976/77. These results demonstrate a strong linkage between the AM and associated precipitation and the Pacific Ocean via ocean/atmosphere interaction. This rela-tionship will aid to forecast future hydrological cycle for the AM monsoon region,and to improve forecasting potential of climatic model with observation data from cave.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant Nos. 2019QZKK0201 & 2019QZKK020705)the National Natural Science Foundation of China (Grant Nos. 41988101 & 41871057)"Strategic Priority Research Program" of Chinese Academy of Sciences (Grant No. XDA20060202)。
文摘Tracking and quantifying the moisture sources of precipitation in different drainage basins in the Tibetan Plateau(TP)help to reveal basin-scale hydrological cycle characteristics under the interactions between the westerlies and Indian summer monsoon(ISM) systems and to improve our understanding on the mechanisms of water resource changes in the ‘Asian Water Tower' under climate changes. Based on a Eulerian moisture tracking model(WAM-2) and three atmospheric reanalysis products(ERA-I, MERRA-2, and JRA-55), the contributions of moisture sources to the precipitation in six major sub-basins in the TP were tracked during an approximately 35-year period(1979/1980–2015). The results showed that in the upper Indus(UI),upper Tarim River(UT), and Qaidam Basin(QB), the moisture sources mainly extended westward along the mid-latitude westerlies to the western part of the Eurasian continent. In contrast, in the Yarlung Zangbo River Basin(YB), inner TP(ITP), and the source area of three eastern rivers(TER, including the Nujiang River, Lancang River, and Yangtze River), the moisture sources extended both westward and southward, but mainly southward along the ISM. In winter and spring, all of the sub-basins were dominated by western moisture sources. In summer, the western sources migrated northward with the zonal movement of the westerlies, and simultaneously the southern sources of the YB, ITP, and TER expanded largely toward the Indian Ocean along the ISM. In autumn, the moisture sources of the UI, UT, and QB shrank to the western sources, and the moisture sources of the YB, ITP, and TER shrank to the central-southern TP and the Indian subcontinent. By quantifying the moisture contributions from multiple sources, we found that the terrestrial moisture dominated in all of the sub-basins, particularly in the UT and QB(62–73%). The oceanic contributions were relatively high in the UI(38–42%) and YB(38–41%). In winter, evaporation from the large western water bodies(such as the Mediterranean, Red Sea, and Persian Gulf) was significantly higher than that from the continental areas. This contributed to the peak(valley) values of the oceanic(terrestrial) moisture contributions to all of the subbasins. In summer, the terrestrial moisture contributions to the UI, UT, and QB reached their annual maximum, but the abundant oceanic moisture transported by the ISM restrained the appearance of land source contribution peaks in the YB, ITP, and TER,resulting in almost equal moisture contributions in the YB from the ocean and land.
基金supported by the National Natural Science Foundation of China(Grant Nos.41873001&41473009)。
文摘The Marine Isotope Stage(MIS5e)is characterized by a warmer climate than that of the pre-industrial period,and serves as an analog for the Current Warm Period(CWP).However,uncertainties persist regarding its climatic stability.Here,we retrieved a stalagmite(WXB075)from Wanxiang Cave in the eastern Qinghai-Tibetan Plateau,and employed abs-olute^(230)Th dating and relative annual layer data to establish a high-precision chronological framework for reconstructing the history of the Asian summer monsoon(ASM)and environmental evolution during early MIS5e with multiple proxies.The findings indicate that the annually laminated stalagmite was formed during Cooling Event 27(C27).The deposition of WXB075 experienced a hiatus(~125.58 ka BP)due to a significant cooling event in the North Atlantic,which may be linked to the unstable climate in the Northern Hemisphere.Additionally,the impact of meltwater discharge in high northern latitudes results in a two-phase evolution of the ASM,i.e.,an initial weaker stage followed by a gradual increase(with exception of deposition hiatus).The climatic instability of ASM is generally characterized by a quasi-60 year cycle that affects vegetation conditions,biological productivity,and karst hydroclimate dynamics.However,the increase in meltwater and decrease in temperature in the Northern Hemisphere have led to a weakened ASM and subsequent reduction in precipitation.Consequently,vegetation degradation above the cave has occurred along with a slowdown of karst hydroclimate.The vegetation conditions,organic matter content,and wet/drought of the karst hydroclimate were affected by both the large-scale monsoon circulation and local environment during extreme weakening(strengthening)of the monsoon when high-frequency climatic events of ASM occurred.A comparison ofδ^(18)O records between early MIS5e and the past 2000 years reveals that the climate during early MIS5e differed significantly from that of CWP,Medieval Warm Period(MWP),and Dark Age Cold Period(DACP)but was similar to Little Ice Age(LIA).Comparison with other geological records from the Northern Hemisphere indicates that climate instability was a widespread phenomenon during MIS5e.The power spectrum analysis of WXB075δ^(18)O reveals significant quasi-60 and 35 a cycles during the early MIS5e,which is consistent with the Atlantic Multidecadal Oscillation(AMO).The comprehensive results demonstrate that the ASM in the early MIS5e was closely linked to solar activity,Intertropical Convergence Zone(ITCZ)position,and Atlantic Meridional Overturning Circulation(AMOC).