This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an an...This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.展开更多
Under the background of global warming, summer (JJA) low temperature events in Northeast China had not occurred for about 15 yr since 1994, but one such event took place in 2009. By using the NCEP/NCAR reanalysis da...Under the background of global warming, summer (JJA) low temperature events in Northeast China had not occurred for about 15 yr since 1994, but one such event took place in 2009. By using the NCEP/NCAR reanalysis data, the 100-yr station temperature data at Harbin and Changchun, and the Hadley Center sea surface temperature (SST) data, this paper intends to reveal the cause, circulation background, and influencing factors of this event. Analysis of both horizontal and vertical circulations of a low-value system over Northeast China in summer 2009 during the low temperature event shows that anomalous activities of the Northeast China cold vortex (NECV) played the most direct role. A decadal cooling trend of - 0.8℃ (10 yr)-1 over 1999-2008 at Changchun and Harbin was found, which is obviously out-of-phase with the linear warming trend (0.2℃ (10 yr)-1) over 1961-2000 for Northeast China in response to the global warming. The previous winter North Pacific polar vortex (NPPV) area index, significantly positively related to the observed summer temperatures of Harbin and Changchun, was also in a significantly declining tendency. These provide favorable decadal backgrounds for the 2009 low temperature event. Different from the average anomaly field of 500-hPa height for summer 1994-2008 in Northeast China, in the summer of 2009, the Arctic Oscillation (AO) showed a strong negative phase distribution, and significant negative height anomalies dominated Northeast Asia, Aleutian Islands, and North Atlantic. Furthermore, the negative phase of North Pacific Oscillation (NPO) in the winter of 2008 was obviously strong, and it maintained in the spring of 2009. Meanwhile, the SSTA in the equatorial eastern-central Pacific Ocean in the winter of 2008 showed a La Nina phase, but the strength of the La Nina weakened obviously in the spring of 2009. The abnormally strong activities of NECV in June and July of 2009 were related to the disturbances of stationary waves that replaced the original ultra-long waves over the North Pacific region in April and May 2009. The singular value decomposition (SVD) and harmonic analysis results suggest that the anomalous phase of NPO is an important precursor for summer temperature variations over Northeast China, and also a stable planetary-scale component that can be extracted from the atmospheric circulation in addition to the chaotic components on the synoptic scale.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41175083 and 41275096)the Special Fund for Meteorological Scientific Research in the Public Interest (Grant Nos. GYHY201006020,GYHY201106016,and GYHY201106015)
文摘This study unveils the evolution of two major early signals in the North Pacific atmosphere-ocean system that heralded abnormal high-pressure blockings and cold-vortex activities across Northeast China, based on an analysis of the configurations of major modes including the polar vortex, the North Pacific Oscillation (NPO), and SST in the preceding winter and spring and atmospheric low-frequency disturbances in Northeast China. We analyzed these aspects to understand the atmosphere ocean physical coupling processes characterized by the two early signals, and here we explain the possible mechanisms through which dipole circulation anomalies affect the summer low-temperature processes in Northeast China. We further analyzed the interdecadal variation background and associated physical processes of the two early signals.
基金Supported by the National Natural Science Foundation of China(41175083,41275096,and40705036)National Science and Technology Support Program of China(2009BAC51B04 and 2007BAC29B01)China Meteorological Administration Special Public Welfare Research Fund(GYHY 20106020 and 201106016)
文摘Under the background of global warming, summer (JJA) low temperature events in Northeast China had not occurred for about 15 yr since 1994, but one such event took place in 2009. By using the NCEP/NCAR reanalysis data, the 100-yr station temperature data at Harbin and Changchun, and the Hadley Center sea surface temperature (SST) data, this paper intends to reveal the cause, circulation background, and influencing factors of this event. Analysis of both horizontal and vertical circulations of a low-value system over Northeast China in summer 2009 during the low temperature event shows that anomalous activities of the Northeast China cold vortex (NECV) played the most direct role. A decadal cooling trend of - 0.8℃ (10 yr)-1 over 1999-2008 at Changchun and Harbin was found, which is obviously out-of-phase with the linear warming trend (0.2℃ (10 yr)-1) over 1961-2000 for Northeast China in response to the global warming. The previous winter North Pacific polar vortex (NPPV) area index, significantly positively related to the observed summer temperatures of Harbin and Changchun, was also in a significantly declining tendency. These provide favorable decadal backgrounds for the 2009 low temperature event. Different from the average anomaly field of 500-hPa height for summer 1994-2008 in Northeast China, in the summer of 2009, the Arctic Oscillation (AO) showed a strong negative phase distribution, and significant negative height anomalies dominated Northeast Asia, Aleutian Islands, and North Atlantic. Furthermore, the negative phase of North Pacific Oscillation (NPO) in the winter of 2008 was obviously strong, and it maintained in the spring of 2009. Meanwhile, the SSTA in the equatorial eastern-central Pacific Ocean in the winter of 2008 showed a La Nina phase, but the strength of the La Nina weakened obviously in the spring of 2009. The abnormally strong activities of NECV in June and July of 2009 were related to the disturbances of stationary waves that replaced the original ultra-long waves over the North Pacific region in April and May 2009. The singular value decomposition (SVD) and harmonic analysis results suggest that the anomalous phase of NPO is an important precursor for summer temperature variations over Northeast China, and also a stable planetary-scale component that can be extracted from the atmospheric circulation in addition to the chaotic components on the synoptic scale.