Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions(ARs)that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of ma...Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions(ARs)that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2-3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observed in another 24 cases.For 30 ARs,an insignificant(in terms of the total magnetic flux of pre-existing AR)emergence of a new magnetic flux within the pre-existing magnetic configuration was observed;for some of them the emergence resulted in a formation of a configuration with a small δ-sunspot;11 out of 100 ARs exhibited no signatures of magnetic flux emergence during the entire interval of observation.In six cases the emergence was in progress when the AR appeared on the Eastern limb,so that the classification and timing of emergence were not possible.We conclude that the recent flux emergence is not a necessary and/or sufficient condition for strong flaring of an AR.The flux emergence rate of flare-productive ARs analyzed here was compared with that of flare-quiet ARs analyzed in our previous studies.We revealed that the flare-productive ARs tend to display faster emergence than the flare-quiet ones do.展开更多
We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon...We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.展开更多
The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parame...The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.展开更多
Nebula theory is the most widely accepted hypothesis about the formation and evolution of the Solar System. This theoryholds that the Sun is formed from a collapsed gas cloud 4.57 billion years ago;when the core tempe...Nebula theory is the most widely accepted hypothesis about the formation and evolution of the Solar System. This theoryholds that the Sun is formed from a collapsed gas cloud 4.57 billion years ago;when the core temperature of the gas cloud rises to 10million K, the thermonuclear reaction of hydrogen fusion into helium is ignited, then the Sun become a star;once the hydrogen in thecore is exhausted, the life of the star will end. But the limited hydrogen element obviously cannot satisfy such a long-termthermonuclear reaction, in order to sustain long-term thermonuclear reactions, a steady stream of fuel must be obtained from space.So the existing hypothesis about the formation and evolution of the Solar System has serious defects. Thus the author has studied theformation of the Moon, the Earth and the Sun, and discovered the formation of the Sun and the real source of star energy. The authorcould also explain many solar activity phenomena such as sunspots, flares, prominences, etc.展开更多
By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ej...By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth.展开更多
We analyze sunspot rotation and magnetic transients in NOAA AR 11429 during two X-class(X5.4 and X1.3)flares using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory.A large leading...We analyze sunspot rotation and magnetic transients in NOAA AR 11429 during two X-class(X5.4 and X1.3)flares using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory.A large leading sunspot with positive magnetic polarity rotated counterclockwise.As expected,the rotation was significantly affected by the two flares.Magnetic transients induced by the flares were clearly evident in the sunspots with negative polarity.They were moving across the sunspots with speed of order 3-7 km s-1.Furthermore,the trend of magnetic flux evolution in these sunspots exhibited changes associated with the flares.These results may shed light on understanding the evolution of sunspots.展开更多
To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 1...To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 10 MeV(I10), E 〉 30 MeV(I30) and E 〉 50 MeV(I50) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I10, I30 and I50 are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I10, I30 and I50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I10, but SXR peak flux makes no additional contribution. For E 〉 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I30, and the CME shock makes a small contribution to I30, but SXR peak flux makes no additional contribution. For E 〉 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 〈 30 MeV protons. However, flares are not only effective accelerators for E 〈 30 MeV protons, but also for E 〉 30 MeV protons, and E 〉 30 MeV protons may be mainly accelerated by concurrent flares.展开更多
With an extensive analysis,we study the temporal evolution of magnetic flux during three successive M-class flares in two adjacent active regions:NOAA 10039 and 10044.The primary data are full disk longitudinal magne...With an extensive analysis,we study the temporal evolution of magnetic flux during three successive M-class flares in two adjacent active regions:NOAA 10039 and 10044.The primary data are full disk longitudinal magnetograms observed by SOHO/MDI.All three flares are observed to be accompanied by magnetic flux changes.The changes occurred immediately or within 1 ~ 10 minutes after the starting time of the flares,indicating that the changes are obvious consequences of the solar flares.Although changes in many points are intrinsic in magnetic flux,for some sites,it is caused by a rapid expansion motion of magnetic flux.For the second flare,the associated change is more gradual compared with the 'step-function' reported in literature.Furthermore,we use the data observed by the Imaging Vector Magnetograph(IVM) at Mees Solar Observatory to check possible line profile changes during the flares.The results from the IVM data confirm the flux changes obtained from the MDI data.A series of line profiles were obtained from the IVM's observations and analyzed for flux change sites.We find that the fluctuations in the width,depth and central wavelength of the lines are less than 5.0 even at the flare's core.No line profile change is observed during or after the flare.We conclude that the magnetic field changes associated with the three solar flares are not caused by flare emission.展开更多
Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in active region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an...Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in active region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neutral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field lines twisting in the photosphere. The twist is then transported into the corona and triggers flares.展开更多
Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, t...Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, the mechanism for the production of anomalous resistivity and its evolution is still an open question. We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its non- linear characteristics. Our principal findings are summarized as follows: 1) the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax=0.03724(vd/ve)^5.702Ωm for vd/ve in the range of 1.4-2.0 and ηmax=0.8746(vd/ve)^1.284Ωm for vd/ve in the range of 2.5-4.5;2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability, the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions, With the increase of drift velocity from 1.4ve to 4.5Ve, the anomalous resistivity continues to increase 100 times; 3) in the rise phase of unstable waves, the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves, the anomalous resistivity decreases at least about one order as com- pared with its peak value; 4) considering that the final velocity of electrons ejected out of the reconnecting current sheet (RCS) decreases with the distance from the neutral point in the neutral plane, the anomalous resistivity decreases with the distance from the neutral point, which is favorable for the Petschek-like reconnection to take place.展开更多
Among the RHESSI flare samples, we concentrated on a kind of flare that presents two successive peaks (that is, it presents both an impulsive phase and a gradual phase) in 12 - 25 keV light curves. Taking the C1.4 f...Among the RHESSI flare samples, we concentrated on a kind of flare that presents two successive peaks (that is, it presents both an impulsive phase and a gradual phase) in 12 - 25 keV light curves. Taking the C1.4 flare on 2002 August 12 as an example, we studied the light curves, spectra, and images in detail. Making full use of the capabilities of RHESSI, we showed some evidence to support the expected causal relationship between these two peaks; the first peak is mainly nonthermal, while the second peak is mainly thermal; the energy carried by nonthermal electrons during the first peak seems to be comparable to the thermal energy of the second peak. The morphologies of X-ray images and their evolutions provide additional evidence for this causality. We conclude that two such peaks in the 12 - 25 keV light curve are good evidence for the chromospheric evaporation. However, the maximum time of the second peak is later than the end time of the first peak, suggesting that for some events, a modification of the traditional Neupert effect could be necessary by inclusion of a time delay, which might be partly related to the filling of the loop by evaporated material.展开更多
It is widely believed that the evolution of solar active regions leads to solar flares. However, information about the evolution of solar active regions is not employed in most existing solar flare forecasting models....It is widely believed that the evolution of solar active regions leads to solar flares. However, information about the evolution of solar active regions is not employed in most existing solar flare forecasting models. In the current work, a short- term solar flare forecasting model is proposed, in which sequential sunspot data, in- cluding three days of information about evolution from active regions, are taken as one of the basic predictors. The sunspot area, the Mclntosh classification, the mag- netic classification and the radio flux are extracted and converted to a numerical for- mat that is suitable for the current forecasting model. Based on these parameters, the sliding-window method is used to form the sequential data by adding three days of information about evolution. Then, multi-layer perceptron and learning vector quanti- zation are employed to predict the flare level within 48 h. Experimental results indicate that the performance of the proposed flare forecasting model works better than previ- ous models.展开更多
The hepatitis C virus(HCV)causes an acute infection that is frequently asymptomatic,but a spontaneous eradication of HCV infection occurs only in one-third of patients.The remaining two-thirds develop a chronic infect...The hepatitis C virus(HCV)causes an acute infection that is frequently asymptomatic,but a spontaneous eradication of HCV infection occurs only in one-third of patients.The remaining two-thirds develop a chronic infection that,in most cases,shows an indolent course and a slow progression to the more advanced stagesof the illness.Nearly a quarter of cases with chronic hepatitis C(CHC)develop liver cirrhosis with or without hepatocellular carcinoma.The indolent course of the illness may be troubled by the occurrence of a hepatic flare,i.e.,a spontaneous acute exacerbation of CHC due to changes in the immune response,immunosuppression and subsequent restoration,and is characterized by an increase in serum aminotransferase values,a frequent deterioration in liver fibrosis and necroinflammation but also a high frequency of sustained viral response to pegylated interferon plus ribavirin treatment.A substantial increase in serum aminotransferase values during the clinical course of CHC may also be a consequence of a superinfection by other hepatotropic viruses,namely hepatitis B virus(HBV),HBV plus hepatitis D virus,hepatitis E virus,cytomegalovirus,particularly in geographical areas with high endemicity levels.The etiology of a hepatic flare in patients with CHC should always be defined to optimize follow-up procedures and clinical and therapeutic decisions.展开更多
Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two type...Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two types of CMEs. One is the FL type associated only with flares, while the other is the intermediate type associated with both filament eruptions and flares. It is found that the velocities of the FL type CMEs are strongly correlated with both the peak and the time-integrated X-ray fluxes of the associated flares. However, the correlations between the intermediate type CME velocities and the corre- sponding two parameters are poor. It is also found that the correlation between the CME velocities and the peak X-ray fluxes is stronger than that between the CME velocities and the time-integrated X-ray fluxes of the associated flares.展开更多
The frequency distribution for several characteristics of a solar flare obeys a power law only above a certain threshold, below which there is an apparent loss of small scale events presumably caused by limited instru...The frequency distribution for several characteristics of a solar flare obeys a power law only above a certain threshold, below which there is an apparent loss of small scale events presumably caused by limited instrumental sensitivity and th:e corresponding event selection bias. It is also possible that this deviation in the power law can have a physical origin in the source. We propose two fitting models incorpo- rating a power law distribution with a low count rate cutoff plus a noise component for the frequency distribution of the hard X-ray peak count rate of all solar flare sam- ples obtained with HXRBS/SMM and BATSE/CGRO observations. Our new fitting method produces the same power-law index as previously developed methods, a low cutoff of the power-law function and its corresponding noise level, which is consistent with measurements of the actual noise level of the hard X-ray count rate. We found that the fitted low cutoff appears to be related to the noise level, i.e., flares are only recognized when their peak count rate is 3or greater than noise. Therefore, the fitted low cutoff, which is smaller than the aforementioned threshold, might be attributed to selection bias, and probably not to the actual count rate cutoff in flares at smaller scales. Whether or not the actual low cutoff physically exists needs to be checked by future observations with increased sensitivities.展开更多
The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show tha...The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power- law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law dis- tribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.展开更多
We developed a?statistical study analyzing global seismicity enhancement and its variation?overtwenty years.?X-flares sometimes occur in conjunction with Coronal Mass Ejections (CME),which make their connection with t...We developed a?statistical study analyzing global seismicity enhancement and its variation?overtwenty years.?X-flares sometimes occur in conjunction with Coronal Mass Ejections (CME),which make their connection with the Earth’s magnetosphere stronger.?The preliminary study divided the Earth into seven regions determined by longitude and latitude, and nine levels of depth valid for most locations?in the?Pacific area.?The results showed that X beams influenced seismicity in terrestrial localities, mainly high magnitude earthquakes occurring below the crust at 70 km.?These internal enhancements happen without the presence of any external forces such as studied in Solar Speed Winds.?Nevertheless, those variations are perceptible in the presence of intense X flares and CME and less observed in the periods during which flares were absent. Two cases of high magnitude earthquakes in recent?years are analyzed, and the extreme external conditions of those events fit?with this theory.展开更多
Magnetic non-potentiality is important for understanding flares and other solar activities in active regions (ARs). Five non-potential parameters, i.e. electric current, current helicity, source field, photospheric ...Magnetic non-potentiality is important for understanding flares and other solar activities in active regions (ARs). Five non-potential parameters, i.e. electric current, current helicity, source field, photospheric free energy, and angular shear, are calculated to quantify the non-potentiality of NOAA AR 11158. Benefitting from the high spatial resolution, high cadence and continuous temporal coverage of vector mag- netograms from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory, both the long-term evolution of the AR and the rapid change during flares are studied. We confirm that, compared with the magnetic flux, the magnetic non-potentiality has a closer connection with the flare, and the emerging flux regions are important for understanding the magnetic non-potentiality and flares. The main re- suits are as follows. (1) The vortex in the source field directly displays the deflection of the horizontal magnetic field. The deflection corresponds to the fast rotating sunspot with a time delay, which suggests that the sunspot rotation leads to an increase in the non-potentiality. (2) Two areas that have evident changes in the azimuth of the vector magnetic field are found near the magnetic polarity inversion line. The change rates of the azimuth are about 1.3° h-1 and 3.6° h-1, respectively. (3) Rapid and prominent increases are found in the variation of helicity during four flares in the regions where their initial brightening occurs. The recovery of the increases takes 3-4 h for the two biggest flares (X2.2 and M6.6), but only takes about 2 h for the two other smaller flares (M2.2 and M1.6).展开更多
Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle(SZA):the ionospheric responses are negatively related to the SZAs.The largest enhanceme...Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle(SZA):the ionospheric responses are negatively related to the SZAs.The largest enhancement in electron density always occurs around the subsolar point.However,from 2001 to 2014,the global distribution of total electron content(TEC)responses showed no obvious relationship between the increases in TEC and the SZA during some solar flares.During these solar flares,the greatest enhancements in TEC did not appear around the subsolar point,but rather far away from the subsolar point.The distribution of TEC enhancements showed larger TEC enhancements along the same latitude.The distribution of anomalous ionospheric responses to the solar flares was not structured the same as traveling ionospheric disturbances.This anomaly distribution was also unrelated to the distribution of background neutral density.It could not be explained by changes in the photochemical process induced by the solar flares.Thus,the transport process could be one of the main reasons for the anomaly distribution of ionospheric responses to the solar flares.This anomaly distribution also suggests that not only the photochemical process but also the transport process could significantly affect the variation in ionospheric electron density during some solar flares.展开更多
文摘Using the data on magnetic field maps and continuum intensity for Solar Cycles 23 and 24,we explored 100 active regions(ARs)that produced M5.0 or stronger flares.We focus on the presence/absence of the emergence of magnetic flux in these ARs 2-3 days before the strong flare onset.We found that 29 ARs in the sample emerged monotonically amidst quiet-Sun.A major emergence of a new magnetic flux within a pre-existing AR yielding the formation of a complex flare-productive configuration was observed in another 24 cases.For 30 ARs,an insignificant(in terms of the total magnetic flux of pre-existing AR)emergence of a new magnetic flux within the pre-existing magnetic configuration was observed;for some of them the emergence resulted in a formation of a configuration with a small δ-sunspot;11 out of 100 ARs exhibited no signatures of magnetic flux emergence during the entire interval of observation.In six cases the emergence was in progress when the AR appeared on the Eastern limb,so that the classification and timing of emergence were not possible.We conclude that the recent flux emergence is not a necessary and/or sufficient condition for strong flaring of an AR.The flux emergence rate of flare-productive ARs analyzed here was compared with that of flare-quiet ARs analyzed in our previous studies.We revealed that the flare-productive ARs tend to display faster emergence than the flare-quiet ones do.
文摘We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.
基金supported by the National Natural Science Foundation of China (Grant Nos.10973020, 40890161 and 10921303)the National Basic Research Program of China (973 Program, Grant No.2011CB811406)
文摘The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.
文摘Nebula theory is the most widely accepted hypothesis about the formation and evolution of the Solar System. This theoryholds that the Sun is formed from a collapsed gas cloud 4.57 billion years ago;when the core temperature of the gas cloud rises to 10million K, the thermonuclear reaction of hydrogen fusion into helium is ignited, then the Sun become a star;once the hydrogen in thecore is exhausted, the life of the star will end. But the limited hydrogen element obviously cannot satisfy such a long-termthermonuclear reaction, in order to sustain long-term thermonuclear reactions, a steady stream of fuel must be obtained from space.So the existing hypothesis about the formation and evolution of the Solar System has serious defects. Thus the author has studied theformation of the Moon, the Earth and the Sun, and discovered the formation of the Sun and the real source of star energy. The authorcould also explain many solar activity phenomena such as sunspots, flares, prominences, etc.
文摘By analysing a long series of data (1996-2019), we show that solar cycle 23 was more marked by violent solar flares and coronal mass ejections (CMEs) compared to solar cycle 24. In particular, the halo coronal mass ejections associated with X-class flares appear to be among the most energetic events in solar activity given the size of the flares, the speed of the CMEs and the intense geomagnetic storms they produce. Out of eighty-six (86) X-class halo CMEs, thirty-seven (37) or 43% are highly geoeffective;twenty-four (24) or approximately 28% are moderately geoeffective and twenty-five (25) or 29% are not geoeffective. Over the two solar cycles (1996 to 2019), 71% of storms were geoeffective and 29% were not. For solar cycle 23, about 78% of storms were geoeffective, while for solar cycle 24, about 56% were geoeffective. For the statistical study based on speed, 85 halo CMEs associated with X-class flares were selected because the CME of 6 December 2006 has no recorded speed value. For both solar cycles, 75.29% of the halo CMEs associated with X-class flares have a speed greater than 1000 km/s. The study showed that 42.18% of halo (X) CMEs with speeds above 1000 km/s could cause intense geomagnetic disturbances. These results show the contribution (in terms of speed) of each class of halo (X) CMEs to the perturbation of the Earth’s magnetic field. Coronal mass ejections then become one of the key indicators of solar activity, especially as they affect the Earth.
基金supported by the National Natural Science Foundation of China (41231068, 41374187, 41531073 and 41674147)
文摘We analyze sunspot rotation and magnetic transients in NOAA AR 11429 during two X-class(X5.4 and X1.3)flares using data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory.A large leading sunspot with positive magnetic polarity rotated counterclockwise.As expected,the rotation was significantly affected by the two flares.Magnetic transients induced by the flares were clearly evident in the sunspots with negative polarity.They were moving across the sunspots with speed of order 3-7 km s-1.Furthermore,the trend of magnetic flux evolution in these sunspots exhibited changes associated with the flares.These results may shed light on understanding the evolution of sunspots.
基金funded by the National Basic Research Program of China (973 Program,Grants 2012CB957801 and 2014CB744203)the National Natural Science Foundation of China (Grant Nos.41074132,41274193,41474166,41304144,11303017 and 11533005)the National Standard Research Program (Grant 200710123)
文摘To investigate the dependence of large gradual solar energetic particle(SEP) events on the associated flares and coronal mass ejections(CMEs), the correlation coefficients(CCs) between peak intensities of E 〉 10 MeV(I10), E 〉 30 MeV(I30) and E 〉 50 MeV(I50) protons and soft X-ray(SXR) emission of associated flares and the speeds of associated CMEs in the three longitudinal areas W0–W39, W40–W70(hereafter the well connected region) and W71–W90 have been calculated.Classical correlation analysis shows that CCs between SXR emission and peak intensities of SEP events always reach their largest value in the well connected region and then decline dramatically in the longitudinal area outside the well connected region, suggesting that they may contribute to the production of SEPs in large SEP events. Both classical and partial correlation analyses show that SXR fluence is a better parameter describing the relationship between flares and SEP events. For large SEP events with source location in the well connected region, the CCs between SXR fluence and I10, I30 and I50 are0.58±0.12, 0.80±0.06 and 0.83±0.06 respectively, while the CCs between CME speed and I10, I30 and I50 are 0.56±0.12, 0.52±0.13 and 0.48±0.13 respectively. The partial correlation analyses show that in the well connected region, both CME shock and SXR fluence can significantly affect I10, but SXR peak flux makes no additional contribution. For E 〉 30 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I30, and the CME shock makes a small contribution to I30, but SXR peak flux makes no additional contribution. For E 〉 50 MeV protons with source location in the well connected region, only SXR fluence can significantly affect I50, but both CME shock and SXR peak flux make no additional contribution. We conclude that these findings provide statistical evidence that for SEP events with source locations in the well connected region, a CME shock is only an effective accelerator for E 〈 30 MeV protons. However, flares are not only effective accelerators for E 〈 30 MeV protons, but also for E 〉 30 MeV protons, and E 〉 30 MeV protons may be mainly accelerated by concurrent flares.
基金Supported by the National Natural Science Foundation of China (Grants Nos. 10833007,10933003 and 10928307)the National Basic Research Program of China (973 Program) under grant 2011CB811402
文摘With an extensive analysis,we study the temporal evolution of magnetic flux during three successive M-class flares in two adjacent active regions:NOAA 10039 and 10044.The primary data are full disk longitudinal magnetograms observed by SOHO/MDI.All three flares are observed to be accompanied by magnetic flux changes.The changes occurred immediately or within 1 ~ 10 minutes after the starting time of the flares,indicating that the changes are obvious consequences of the solar flares.Although changes in many points are intrinsic in magnetic flux,for some sites,it is caused by a rapid expansion motion of magnetic flux.For the second flare,the associated change is more gradual compared with the 'step-function' reported in literature.Furthermore,we use the data observed by the Imaging Vector Magnetograph(IVM) at Mees Solar Observatory to check possible line profile changes during the flares.The results from the IVM data confirm the flux changes obtained from the MDI data.A series of line profiles were obtained from the IVM's observations and analyzed for flux change sites.We find that the fluctuations in the width,depth and central wavelength of the lines are less than 5.0 even at the flare's core.No line profile change is observed during or after the flare.We conclude that the magnetic field changes associated with the three solar flares are not caused by flare emission.
基金supported by the National Science Foundation of China (NSFC) undergrant numbers 10673031 and 40636031the National Basic Research Program of China 973 undergrant number G2006CB806301.
文摘Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in active region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neutral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field lines twisting in the photosphere. The twist is then transported into the corona and triggers flares.
基金supported by the National Natural Science Foundation of China(Grant Nos.10773032,10833007 and 11073006)the "973" program(No.2006CB806302)
文摘Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma. Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations. However, the mechanism for the production of anomalous resistivity and its evolution is still an open question. We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its non- linear characteristics. Our principal findings are summarized as follows: 1) the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax=0.03724(vd/ve)^5.702Ωm for vd/ve in the range of 1.4-2.0 and ηmax=0.8746(vd/ve)^1.284Ωm for vd/ve in the range of 2.5-4.5;2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability, the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions, With the increase of drift velocity from 1.4ve to 4.5Ve, the anomalous resistivity continues to increase 100 times; 3) in the rise phase of unstable waves, the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves, the anomalous resistivity decreases at least about one order as com- pared with its peak value; 4) considering that the final velocity of electrons ejected out of the reconnecting current sheet (RCS) decreases with the distance from the neutral point in the neutral plane, the anomalous resistivity decreases with the distance from the neutral point, which is favorable for the Petschek-like reconnection to take place.
基金supported by the National Natural Science Foundation of China (Grant Nos.10773031 and 10833007)the Ministry of Science and Technology of China(Grant No. 2006CB806302)by the CAS project KJCX2-YW-T04
文摘Among the RHESSI flare samples, we concentrated on a kind of flare that presents two successive peaks (that is, it presents both an impulsive phase and a gradual phase) in 12 - 25 keV light curves. Taking the C1.4 flare on 2002 August 12 as an example, we studied the light curves, spectra, and images in detail. Making full use of the capabilities of RHESSI, we showed some evidence to support the expected causal relationship between these two peaks; the first peak is mainly nonthermal, while the second peak is mainly thermal; the energy carried by nonthermal electrons during the first peak seems to be comparable to the thermal energy of the second peak. The morphologies of X-ray images and their evolutions provide additional evidence for this causality. We conclude that two such peaks in the 12 - 25 keV light curve are good evidence for the chromospheric evaporation. However, the maximum time of the second peak is later than the end time of the first peak, suggesting that for some events, a modification of the traditional Neupert effect could be necessary by inclusion of a time delay, which might be partly related to the filling of the loop by evaporated material.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10973020 and 11273031)
文摘It is widely believed that the evolution of solar active regions leads to solar flares. However, information about the evolution of solar active regions is not employed in most existing solar flare forecasting models. In the current work, a short- term solar flare forecasting model is proposed, in which sequential sunspot data, in- cluding three days of information about evolution from active regions, are taken as one of the basic predictors. The sunspot area, the Mclntosh classification, the mag- netic classification and the radio flux are extracted and converted to a numerical for- mat that is suitable for the current forecasting model. Based on these parameters, the sliding-window method is used to form the sequential data by adding three days of information about evolution. Then, multi-layer perceptron and learning vector quanti- zation are employed to predict the flare level within 48 h. Experimental results indicate that the performance of the proposed flare forecasting model works better than previ- ous models.
基金Supported by A grant from PRIN 2008,MIUR,Rome,Italy"Ottimizzazione Della Diagnosi Eziologica dell’epatite Acuta C E Studio dei Fattori Viro-Immunologici di Guarigione,di Cronicizzazione E di Risposta Alla Terapia Con Interferone"in part by a grant from Regione Campania"Progetti per il migliora-mento della qualitàdell’assistenza,diagnosi e terapia del paziente affetto da AIDS nei settori:immunologia,coinfezioni,informa-zione e prevenzione",2008
文摘The hepatitis C virus(HCV)causes an acute infection that is frequently asymptomatic,but a spontaneous eradication of HCV infection occurs only in one-third of patients.The remaining two-thirds develop a chronic infection that,in most cases,shows an indolent course and a slow progression to the more advanced stagesof the illness.Nearly a quarter of cases with chronic hepatitis C(CHC)develop liver cirrhosis with or without hepatocellular carcinoma.The indolent course of the illness may be troubled by the occurrence of a hepatic flare,i.e.,a spontaneous acute exacerbation of CHC due to changes in the immune response,immunosuppression and subsequent restoration,and is characterized by an increase in serum aminotransferase values,a frequent deterioration in liver fibrosis and necroinflammation but also a high frequency of sustained viral response to pegylated interferon plus ribavirin treatment.A substantial increase in serum aminotransferase values during the clinical course of CHC may also be a consequence of a superinfection by other hepatotropic viruses,namely hepatitis B virus(HBV),HBV plus hepatitis D virus,hepatitis E virus,cytomegalovirus,particularly in geographical areas with high endemicity levels.The etiology of a hepatic flare in patients with CHC should always be defined to optimize follow-up procedures and clinical and therapeutic decisions.
基金the State Key Laboratory of Space Weather for its support to the Open Research Program
文摘Coronal mass ejection (CME) velocities have been studied over recent decades. We present a statistical analysis of the relationship between CME velocities and X-ray fluxes of the associated flares. We study two types of CMEs. One is the FL type associated only with flares, while the other is the intermediate type associated with both filament eruptions and flares. It is found that the velocities of the FL type CMEs are strongly correlated with both the peak and the time-integrated X-ray fluxes of the associated flares. However, the correlations between the intermediate type CME velocities and the corre- sponding two parameters are poor. It is also found that the correlation between the CME velocities and the peak X-ray fluxes is stronger than that between the CME velocities and the time-integrated X-ray fluxes of the associated flares.
基金Supported by the National Natural Science Foundation of China
文摘The frequency distribution for several characteristics of a solar flare obeys a power law only above a certain threshold, below which there is an apparent loss of small scale events presumably caused by limited instrumental sensitivity and th:e corresponding event selection bias. It is also possible that this deviation in the power law can have a physical origin in the source. We propose two fitting models incorpo- rating a power law distribution with a low count rate cutoff plus a noise component for the frequency distribution of the hard X-ray peak count rate of all solar flare sam- ples obtained with HXRBS/SMM and BATSE/CGRO observations. Our new fitting method produces the same power-law index as previously developed methods, a low cutoff of the power-law function and its corresponding noise level, which is consistent with measurements of the actual noise level of the hard X-ray count rate. We found that the fitted low cutoff appears to be related to the noise level, i.e., flares are only recognized when their peak count rate is 3or greater than noise. Therefore, the fitted low cutoff, which is smaller than the aforementioned threshold, might be attributed to selection bias, and probably not to the actual count rate cutoff in flares at smaller scales. Whether or not the actual low cutoff physically exists needs to be checked by future observations with increased sensitivities.
基金supported partially by the Strategic Priority Research Program,the Emergence of Cosmological Structures,of the Chinese Academy of Sciences(Grant No.XDB09000000)MSTC Program2011 CB811402+3 种基金the National Natural Science Foundation of China(NSFC)(Grant Nos.11173063, 11173064,11233008 and 11427803)supported by the NFSC(Grant No.11473070)the Natural Science Foundation of Jiangsu Province (Grant BK2012889)the Youth Innovation Promotion Association,CAS,for financial support
文摘The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality (SOC). In this paper, we first show that, so long as the shape of the normalized light curve is not correlated with the peak flux, the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the power- law frequency distribution of the peak flux, which may partially explain why power-law distributions are ubiquitous in the Universe. We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different: the higher energy channel has a harder distribution than the lower energy channel, which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites. The temperature (T) distribution, on the other hand, approaches a power-law dis- tribution with an index of 2 for high values of T. Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.
文摘We developed a?statistical study analyzing global seismicity enhancement and its variation?overtwenty years.?X-flares sometimes occur in conjunction with Coronal Mass Ejections (CME),which make their connection with the Earth’s magnetosphere stronger.?The preliminary study divided the Earth into seven regions determined by longitude and latitude, and nine levels of depth valid for most locations?in the?Pacific area.?The results showed that X beams influenced seismicity in terrestrial localities, mainly high magnitude earthquakes occurring below the crust at 70 km.?These internal enhancements happen without the presence of any external forces such as studied in Solar Speed Winds.?Nevertheless, those variations are perceptible in the presence of intense X flares and CME and less observed in the periods during which flares were absent. Two cases of high magnitude earthquakes in recent?years are analyzed, and the extreme external conditions of those events fit?with this theory.
基金supported by the National Basic Research Program of China(973 program,Grant No. 2011CB811403)the National Natural Science Foundation of China (Grant Nos. 11025315,10921303,10973019,11003024,40890161,11203037 and 41074123)the CAS Project KJCX2-EW-T07
文摘Magnetic non-potentiality is important for understanding flares and other solar activities in active regions (ARs). Five non-potential parameters, i.e. electric current, current helicity, source field, photospheric free energy, and angular shear, are calculated to quantify the non-potentiality of NOAA AR 11158. Benefitting from the high spatial resolution, high cadence and continuous temporal coverage of vector mag- netograms from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory, both the long-term evolution of the AR and the rapid change during flares are studied. We confirm that, compared with the magnetic flux, the magnetic non-potentiality has a closer connection with the flare, and the emerging flux regions are important for understanding the magnetic non-potentiality and flares. The main re- suits are as follows. (1) The vortex in the source field directly displays the deflection of the horizontal magnetic field. The deflection corresponds to the fast rotating sunspot with a time delay, which suggests that the sunspot rotation leads to an increase in the non-potentiality. (2) Two areas that have evident changes in the azimuth of the vector magnetic field are found near the magnetic polarity inversion line. The change rates of the azimuth are about 1.3° h-1 and 3.6° h-1, respectively. (3) Rapid and prominent increases are found in the variation of helicity during four flares in the regions where their initial brightening occurs. The recovery of the increases takes 3-4 h for the two biggest flares (X2.2 and M6.6), but only takes about 2 h for the two other smaller flares (M2.2 and M1.6).
基金supported by the National Key Research and Development Program (2018YFC1503504)the National Natural Science Foundation of China (41822403, 41621063, 41774165)the Youth Innovation Promotion Association CAS
文摘Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle(SZA):the ionospheric responses are negatively related to the SZAs.The largest enhancement in electron density always occurs around the subsolar point.However,from 2001 to 2014,the global distribution of total electron content(TEC)responses showed no obvious relationship between the increases in TEC and the SZA during some solar flares.During these solar flares,the greatest enhancements in TEC did not appear around the subsolar point,but rather far away from the subsolar point.The distribution of TEC enhancements showed larger TEC enhancements along the same latitude.The distribution of anomalous ionospheric responses to the solar flares was not structured the same as traveling ionospheric disturbances.This anomaly distribution was also unrelated to the distribution of background neutral density.It could not be explained by changes in the photochemical process induced by the solar flares.Thus,the transport process could be one of the main reasons for the anomaly distribution of ionospheric responses to the solar flares.This anomaly distribution also suggests that not only the photochemical process but also the transport process could significantly affect the variation in ionospheric electron density during some solar flares.