The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ...The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.展开更多
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ...China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.展开更多
This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation...This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.展开更多
In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to f...In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.展开更多
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi...The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.展开更多
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon...The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particular...Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.展开更多
Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized s...Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.展开更多
Special cooling methods are needed for normal growth of crops in closed greenhouses which permit no ventilation, especially during warm seasons. Experi- ments were designed to evaluate two cooling methods (Watergy ch...Special cooling methods are needed for normal growth of crops in closed greenhouses which permit no ventilation, especially during warm seasons. Experi- ments were designed to evaluate two cooling methods (Watergy chimney method and pool method) in a closed greenhouse in Beijing during warm seasons. Prelimi- nary results showed that average temperature at daytime (from 8:00 to 18:00) at 100 cm above ground surface in the closed greenhouse could be reduced by 8 with the Watergy chimney method. Average relative humidity fluctuated between 45% and 75% during daytime at 100 cm above ground surface within the closed greenhouse. With the pool method, average temperature was about 10 ℃ lower than that of the control greenhouse without pool at 50 cm above the ground surface. The peak temperature at 50 cm height was about 32℃ between 11:30 and 15:00 and, close to outside temperature. Temperature in this system satisfied normal growth of most crops, but relative humidity at 50 cm height were above 90% at daytime.展开更多
ObjectiveThe aim was to increase farmers’ income and reduce the waste of fertilizer by exploring effects of N, P and K fertilizations on vegetable yields and the accumulation of N, P and K in vegetable and soils. Met...ObjectiveThe aim was to increase farmers’ income and reduce the waste of fertilizer by exploring effects of N, P and K fertilizations on vegetable yields and the accumulation of N, P and K in vegetable and soils. MethodThe fertilization tests were conducted on tomato, cauliflower and celery in greenhouses. ResultWhen N, P and K were not applied in tomato, cauliflower or celery, the yields reduced in 6.0%-13.8% and total annual income reduced by 39 220, 36 902 and 22 023 yuan/hm 2 respectively, suggesting that N, P and K are limiting factors of yield. The absorbed N amounts of tomato and cauliflower were higher compared with celery; the absorbed P amount of cauliflower was higher compared with tomato and celery; the absorbed K amount of tomato was the highest, followed by celery and cauliflower. The absorbed N in tomato fruit was lower than that of cauliflower and the absorbed N amount of other parts of tomato was also lower. Furthermore, the absorbed amounts of P and K by tomato and cauliflower fruits were higher than it absorbed by the other parts, especially the absorbed of K was significantly high. Total absorbed amounts of N, P and K from high to low were cauliflower, tomato and celery. After harvesting of tomato, cauliflower and celery, N, P and K in soils were all higher compared with soils before planting. Influenced by fertilizers, residual N content in soils grown with tomato and residual P content in soils grown with celery both doubled compared with base soils. Cauliflower plants were not applied with organic fertilizer, and residual N and K contents in soils were lower compared with tomato and celery. ConclusionResidual P content in soils is higher, which is a kind of waste and would cause pollution on soils. It is necessary to improve the proportion of organic and inorganic fertilizers in fertilization.展开更多
To build a rapid and accurate method for greenhouse vegetable landinformation extraction using an index model derived from TM digital data of Qingzhou City, ShandongProvince, based on a systematic analysis of the spec...To build a rapid and accurate method for greenhouse vegetable landinformation extraction using an index model derived from TM digital data of Qingzhou City, ShandongProvince, based on a systematic analysis of the spectral characteristics of different land use typesin the study area, a subset of the image was first made to eliminate the mountainous region notassociated with vegetable distribution, and then water body pixels were masked. With this the V_Iindex model for greenhouse vegetable land extraction was developed. The index model indicatedgreenhouse vegetable land for Qingzhou in April 2002 was concentrated in the southeast and aroundrural residential areas. Field data used for an accuracy evaluation showed that greenhouse hectaresdetermined with remote sensing were 95.9% accurate, and accuracy for the spatial distribution ofgreenhouse vegetable land cross checked with a random sample was 96.3%. Therefore, this approachprovided an effective method for greenhouse vegetable land information extraction and has potentialsignificance for management of greenhouse vegetable production in the study area, as well as NorthChina.展开更多
The soil organic matter content in the greenhouses around Lhasa City was determined by potassium dichromate-sulfuric acid digestion method. The results showed that the soil organic matter content differed among differ...The soil organic matter content in the greenhouses around Lhasa City was determined by potassium dichromate-sulfuric acid digestion method. The results showed that the soil organic matter content differed among different soil layers of the greenhouses around Lhasa City, and it was relatively low in the deep soil. The soil organic matter content also differed among greenhouses with different cultivation modes. In the same soil layer, the organic matter content in arched greenhouse was lower than that in semi-arched greenhouse. Among all the soil samples, the samples with organic matter content below the critical value (20 g/kg) accounted for 61.33%, and the samples with higher organic matter content (≥30 g/kg) accounted for 10.64%. The soil organic matter content in the greenhouses of different counties of Lhasa City ranked as Dazi County's〉Duilongdeqing County's〉Qushui County's. In overall, the organic matter content in the soil of greenhouses around Lhasa City was medium-low, and the fertility of the greenhouse soil was at the middle level.展开更多
The greenhouse whitefly, Trialeurodes vaporariorum (Westwood), is a major pest of tomato, Solanum lycopersicum L. Management in both the field and greenhouse is often based on foliar applications of insecticides. A la...The greenhouse whitefly, Trialeurodes vaporariorum (Westwood), is a major pest of tomato, Solanum lycopersicum L. Management in both the field and greenhouse is often based on foliar applications of insecticides. A lack of control along with resistance development requires development of alternatives to currently available insecticides. Pyrifluquinazon is a recently developed insecticide by Nichino/Nihon Nohyaku Co., Japan and is marketed in the US by Nichino America. The insecticide inhibits feeding by aphids, thrips, mealybugs and scale insects resulting in death. Because limited information exists on pyrifluquinazon effectiveness against whiteflies, tests were initiated to establish its toxicity against the greenhouse whitefly on greenhouse produced tomato. Data reported herein indicate that pyrifluquinazon was highly effective against adult greenhouse whiteflies. When adults were transferred to tomato shortly after the application had dried, mortality counts taken after 48 h produced LC50 and LC95 values of 0.2469 and 2.4826 μg·g-1, respectively. Although few adults were observed on tomato foliage 24 h post-exposure, little mortality was observed until the 48 h observation. When adult whiteflies were placed on tomato 3 d after pyrifluquinazon application, the LC50 value was 0.3343 μg·g-1 which did not significantly differ from the 0 h LC50 value. A significant increase in LC50 value was observed when adults were placed on tomato 5 d after pyrifluquinazon application. In a greenhouse efficacy trial, both the recommended pyrifluquinazon rate (46.8 g active ingredient [AI] ha-1) and a reduced rate (11.7 g·AI·ha-1) significantly reduced numbers of whitefly adults when compared to the non-treated control for 10 days. The 46.8 g·AI·ha-1 rate was as effective as the insecticide standard, imidacloprid. Pyrifluquinazon applied to tomato foliage in the greenhouse offers a useful alternative to currently available insecticides for control of greenhouse whitefly. Further, its unique mode of action may represent a new tool in management of insecticide resistance.展开更多
Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and hu...Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse.展开更多
Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisi...Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.展开更多
This research was conducted to investigate the effects of three heating systems on cucumber yield,and cost and gas volume consumed in greenhouses located in Varamin region,Tehran province,Iran.Conventional heating sys...This research was conducted to investigate the effects of three heating systems on cucumber yield,and cost and gas volume consumed in greenhouses located in Varamin region,Tehran province,Iran.Conventional heating systems used in the greenhouses are:central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases).The study was carried out for two consecutive cucumber cultivation periods from January to June.Average values of crop yield,volume and cost of gas consumed were determined separately for each heating system.Results of the study indicated that the central heating system with the highest crop yield(295 t/ha),and the lowest volume(100,000 m^(3)/ha)and cost(840 USD/ha)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.展开更多
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial asp...High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.展开更多
This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conve...This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conventional heating systems,namely the central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases)were studied during two consecutive periods of greenhouse cucumber cultivation in the cold season(from January to June),and average values of crop yield,volume and cost of gas consumed were determined separately.Results of the study indicated that the central heating system with the highest crop yield(295 tha^-1),and the lowest volume(100,000 m3ha^-1)and cost(210,000,000 Rialsha^-1)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.展开更多
With the workmanship decrease in farms, the necessity to rationalize the use of other inputs and the development of technology has rapidly expanded the use of computer simulation in agricultural systems. One of the ag...With the workmanship decrease in farms, the necessity to rationalize the use of other inputs and the development of technology has rapidly expanded the use of computer simulation in agricultural systems. One of the agricultural systems in which the modeling process of plant growth has been more engaged is the greenhouse production for horticultural crops. In Mediterranean climate, it is during the night that the energy losses are important and can be compensated with an artificial heat input. In this work an experiment was performed in a greenhouse in the north of Portugal. Temperature values in several points and air velocity in the aperture were measured during the night for three different cases: natural convective heating (case A);artificial heating tubes (AHT) (case B);AHT and natural ventilation (case C). A CFD simulation, carried out using FLOTRAN module of ANSYS, was also performed in two-dimensional configuration to obtain the indoor air temperature and velocity fields for the three cases. A very good agreement between experimental and numerical temperature values were verified, which allows to validate the adopted numerical procedure. In case A, the average temperature was 2.2℃. An average increase of 6.7℃ and 3.5℃ on the air temperature was obtained for the case B and case C, respectively. These results clearly emphasis the influence of each thermal load on greenhouse indoor air properties.展开更多
基金financially supported by the Steel Structure Research and Education Promotion Project of the Japan Iron and Steel Federation in FY2016.
文摘The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern.
基金The authors acknowledge the financial support received from the National Natural Science Foundation of China(72061147002).
文摘China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies.
文摘This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.
基金supported by the National Natural Science Foundation of China(42177455)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2022C02008 and 2022C02058)+1 种基金Central Public-interest Scientific Institution Basal Research Fund(CPSIBRF-CNRRI-202305)the Agricultural Science and Technology Innovation Program(ASTIP)。
文摘In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption.
基金funded by the Natural Science Foundation of China(No.41807041)the Science and Technology Research Project of Henan Province(242102111101)the Mechanical Design,Manufacturing,and Automation Key Discipline of Henan Province(JG[2018]No.119).
文摘The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation.
基金Supported by Key Scientific Research Project in Colleges and Universities of Henan Province(22B180011)Project of Henan Provincial Department of Science and Technology(232102320262)+1 种基金Education and Teaching Reform Research Project of Pingdingshan University(2021-JY55)Key Demonstration Course of Pingdingshan University in 2022——Comprehensive Experiment of Environmental Biology.
文摘The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
文摘Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic.
文摘Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient.
基金Supported by National High Technology Research and Development Program of China(2012AA101903,2011AA100504)Natural Science Foundation of Shaanxi Province(K3320215199)Research Fund for the Doctoral Program of Northwest A&F University(2452015291)~~
文摘Special cooling methods are needed for normal growth of crops in closed greenhouses which permit no ventilation, especially during warm seasons. Experi- ments were designed to evaluate two cooling methods (Watergy chimney method and pool method) in a closed greenhouse in Beijing during warm seasons. Prelimi- nary results showed that average temperature at daytime (from 8:00 to 18:00) at 100 cm above ground surface in the closed greenhouse could be reduced by 8 with the Watergy chimney method. Average relative humidity fluctuated between 45% and 75% during daytime at 100 cm above ground surface within the closed greenhouse. With the pool method, average temperature was about 10 ℃ lower than that of the control greenhouse without pool at 50 cm above the ground surface. The peak temperature at 50 cm height was about 32℃ between 11:30 and 15:00 and, close to outside temperature. Temperature in this system satisfied normal growth of most crops, but relative humidity at 50 cm height were above 90% at daytime.
基金Supported by Tianjin Municipal Science and Technology Commission Program(07ZCGYNC00800)International Plant Nutrition Institute Program(Tianjin-2008,Tianjin-2009)Agricultural Eco-protection Program of Ministry of Agriculture(2110402-201258)~~
文摘ObjectiveThe aim was to increase farmers’ income and reduce the waste of fertilizer by exploring effects of N, P and K fertilizations on vegetable yields and the accumulation of N, P and K in vegetable and soils. MethodThe fertilization tests were conducted on tomato, cauliflower and celery in greenhouses. ResultWhen N, P and K were not applied in tomato, cauliflower or celery, the yields reduced in 6.0%-13.8% and total annual income reduced by 39 220, 36 902 and 22 023 yuan/hm 2 respectively, suggesting that N, P and K are limiting factors of yield. The absorbed N amounts of tomato and cauliflower were higher compared with celery; the absorbed P amount of cauliflower was higher compared with tomato and celery; the absorbed K amount of tomato was the highest, followed by celery and cauliflower. The absorbed N in tomato fruit was lower than that of cauliflower and the absorbed N amount of other parts of tomato was also lower. Furthermore, the absorbed amounts of P and K by tomato and cauliflower fruits were higher than it absorbed by the other parts, especially the absorbed of K was significantly high. Total absorbed amounts of N, P and K from high to low were cauliflower, tomato and celery. After harvesting of tomato, cauliflower and celery, N, P and K in soils were all higher compared with soils before planting. Influenced by fertilizers, residual N content in soils grown with tomato and residual P content in soils grown with celery both doubled compared with base soils. Cauliflower plants were not applied with organic fertilizer, and residual N and K contents in soils were lower compared with tomato and celery. ConclusionResidual P content in soils is higher, which is a kind of waste and would cause pollution on soils. It is necessary to improve the proportion of organic and inorganic fertilizers in fertilization.
基金Project supported by the Chinese Ministry of Education (No. [2002] 247).
文摘To build a rapid and accurate method for greenhouse vegetable landinformation extraction using an index model derived from TM digital data of Qingzhou City, ShandongProvince, based on a systematic analysis of the spectral characteristics of different land use typesin the study area, a subset of the image was first made to eliminate the mountainous region notassociated with vegetable distribution, and then water body pixels were masked. With this the V_Iindex model for greenhouse vegetable land extraction was developed. The index model indicatedgreenhouse vegetable land for Qingzhou in April 2002 was concentrated in the southeast and aroundrural residential areas. Field data used for an accuracy evaluation showed that greenhouse hectaresdetermined with remote sensing were 95.9% accurate, and accuracy for the spatial distribution ofgreenhouse vegetable land cross checked with a random sample was 96.3%. Therefore, this approachprovided an effective method for greenhouse vegetable land information extraction and has potentialsignificance for management of greenhouse vegetable production in the study area, as well as NorthChina.
基金Supported by College Students'Innovative Experimental Training Program of Tibet University(2016QCX016)~~
文摘The soil organic matter content in the greenhouses around Lhasa City was determined by potassium dichromate-sulfuric acid digestion method. The results showed that the soil organic matter content differed among different soil layers of the greenhouses around Lhasa City, and it was relatively low in the deep soil. The soil organic matter content also differed among greenhouses with different cultivation modes. In the same soil layer, the organic matter content in arched greenhouse was lower than that in semi-arched greenhouse. Among all the soil samples, the samples with organic matter content below the critical value (20 g/kg) accounted for 61.33%, and the samples with higher organic matter content (≥30 g/kg) accounted for 10.64%. The soil organic matter content in the greenhouses of different counties of Lhasa City ranked as Dazi County's〉Duilongdeqing County's〉Qushui County's. In overall, the organic matter content in the soil of greenhouses around Lhasa City was medium-low, and the fertility of the greenhouse soil was at the middle level.
文摘The greenhouse whitefly, Trialeurodes vaporariorum (Westwood), is a major pest of tomato, Solanum lycopersicum L. Management in both the field and greenhouse is often based on foliar applications of insecticides. A lack of control along with resistance development requires development of alternatives to currently available insecticides. Pyrifluquinazon is a recently developed insecticide by Nichino/Nihon Nohyaku Co., Japan and is marketed in the US by Nichino America. The insecticide inhibits feeding by aphids, thrips, mealybugs and scale insects resulting in death. Because limited information exists on pyrifluquinazon effectiveness against whiteflies, tests were initiated to establish its toxicity against the greenhouse whitefly on greenhouse produced tomato. Data reported herein indicate that pyrifluquinazon was highly effective against adult greenhouse whiteflies. When adults were transferred to tomato shortly after the application had dried, mortality counts taken after 48 h produced LC50 and LC95 values of 0.2469 and 2.4826 μg·g-1, respectively. Although few adults were observed on tomato foliage 24 h post-exposure, little mortality was observed until the 48 h observation. When adult whiteflies were placed on tomato 3 d after pyrifluquinazon application, the LC50 value was 0.3343 μg·g-1 which did not significantly differ from the 0 h LC50 value. A significant increase in LC50 value was observed when adults were placed on tomato 5 d after pyrifluquinazon application. In a greenhouse efficacy trial, both the recommended pyrifluquinazon rate (46.8 g active ingredient [AI] ha-1) and a reduced rate (11.7 g·AI·ha-1) significantly reduced numbers of whitefly adults when compared to the non-treated control for 10 days. The 46.8 g·AI·ha-1 rate was as effective as the insecticide standard, imidacloprid. Pyrifluquinazon applied to tomato foliage in the greenhouse offers a useful alternative to currently available insecticides for control of greenhouse whitefly. Further, its unique mode of action may represent a new tool in management of insecticide resistance.
文摘Water consumption can be reduced by using a greenhouse for agriculture in desert areas. We analyzed the effect of control of ventilation, sprinkler water, and solar radiation?shielding on changes of temperature and humidity in a greenhouse under various desert area conditions. We calculated the changes in temperature and humidity in a greenhouse for a whole day in four seasons, and the calculation results of water consumption with and without a greenhouse were compared. When ventilation, shielding, and sprinkler water were controlled under suitable conditions to grow orchids in a desert area, water consumption in July was only 7% of that without a greenhouse.
文摘Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.
基金the Agricultural Research,Education and Extension Organization(AREEO)。
文摘This research was conducted to investigate the effects of three heating systems on cucumber yield,and cost and gas volume consumed in greenhouses located in Varamin region,Tehran province,Iran.Conventional heating systems used in the greenhouses are:central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases).The study was carried out for two consecutive cucumber cultivation periods from January to June.Average values of crop yield,volume and cost of gas consumed were determined separately for each heating system.Results of the study indicated that the central heating system with the highest crop yield(295 t/ha),and the lowest volume(100,000 m^(3)/ha)and cost(840 USD/ha)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.
文摘High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m^(2) for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m^(2) in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.
基金The supports provided by the Agricultural Research,Education and Extension Organization,Iran in research project number 2-41-14-031-960719 are gratefully acknowledged.
文摘This research was conducted to study the effect of different heating systems in cucumber production greenhouses in Varamin region,Tehran province,Iran on crop yield,volume and cost of gas consumed.Three types of conventional heating systems,namely the central heating system(including boiler+hot water pipes),gas heater system(including double-walled tank+blower)and traditional furnace system(including ignition chamber+torch+pipes carrying a mixture of hot air and flammable gases)were studied during two consecutive periods of greenhouse cucumber cultivation in the cold season(from January to June),and average values of crop yield,volume and cost of gas consumed were determined separately.Results of the study indicated that the central heating system with the highest crop yield(295 tha^-1),and the lowest volume(100,000 m3ha^-1)and cost(210,000,000 Rialsha^-1)of gas consumed was the best and most suitable heating system for greenhouses producing cucumbers in Varamin region and other regions with the same and similar climate as well as regions with active greenhouses in the cold season.
文摘With the workmanship decrease in farms, the necessity to rationalize the use of other inputs and the development of technology has rapidly expanded the use of computer simulation in agricultural systems. One of the agricultural systems in which the modeling process of plant growth has been more engaged is the greenhouse production for horticultural crops. In Mediterranean climate, it is during the night that the energy losses are important and can be compensated with an artificial heat input. In this work an experiment was performed in a greenhouse in the north of Portugal. Temperature values in several points and air velocity in the aperture were measured during the night for three different cases: natural convective heating (case A);artificial heating tubes (AHT) (case B);AHT and natural ventilation (case C). A CFD simulation, carried out using FLOTRAN module of ANSYS, was also performed in two-dimensional configuration to obtain the indoor air temperature and velocity fields for the three cases. A very good agreement between experimental and numerical temperature values were verified, which allows to validate the adopted numerical procedure. In case A, the average temperature was 2.2℃. An average increase of 6.7℃ and 3.5℃ on the air temperature was obtained for the case B and case C, respectively. These results clearly emphasis the influence of each thermal load on greenhouse indoor air properties.