期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Photocatalytic degradation of Acid Blue 62 over CuO-SnO_2 nanocomposite photocatalyst under simulated sunlight 被引量:17
1
作者 XIA Hui-li ZHUANG Hui-sheng ZHANG Tao XIAO Dong-chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1141-1145,共5页
The novel CuO-SnO2 nanocomposite oxide photocatalysts were prepared by simple co-precipitation method, and characterized by X- ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurement an... The novel CuO-SnO2 nanocomposite oxide photocatalysts were prepared by simple co-precipitation method, and characterized by X- ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurement and UV-Vis diffuse reflectance spectroscopy. The photocatalytic activities of CuO-SnO2, evaluated using the photodegradation of Acid Blue 62 as a probe reaction under the irradiation of Xenon light, were also found to be related to the calcination temperature and the molar ratio of Cu to Sn. The maximum photocatalytic activity of the CuO-SnO2 photocatalyst was observed to be calcined at 500~C for 3 h (the molar ratio of Cu to Sn was 1:1) due to the sample with good crystallization and high surface area. It also showed much higher photocatalytic activity in treatment dye wastewater under simulated sunlight irradiation compared to Degussa P25 TiO2. 展开更多
关键词 PHOTOCATALYSIS copper oxide tin dioxide Acid Blue 62 (AB62) simulated sunlight
下载PDF
Preparation,characterization and photocatalytic properties of BiOBr/ZnO composites 被引量:10
2
作者 Yanling Geng Na Li +1 位作者 Jiyan Ma Zhenhai Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期416-421,共6页
BiOBr/ZnO composite photocatalysts were prepared by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microsco... BiOBr/ZnO composite photocatalysts were prepared by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM), UV–Vis diffusion reflectance spectroscopy(DRS) and photoluminescence(PL) spectroscopy, respectively. The photocatalytic activities were evaluated by the degradation of methyl blue(MB) under the simulated sunlight irradiation. Among all the samples, the BiOBr/ZnO composite with a mole ratio of 3:1(Bi:Zn) exhibited the best photocatalytic activity. The improvement of photocatalytic activity was mainly attributed to the low recombination ratio of photo-induced electron-hole pairs. The possible photocatalytic mechanism was discussed on the basis of the band structures of BiOBr and ZnO. 展开更多
关键词 BiOBr ZNO Photocatalytic activity Simulated sunlight
下载PDF
g-C3N4/Ag/GO Composite Photocatalyst with Efficient Photocatalytic Performance: Synthesis, Characterization, Kinetic Studies, Toxicity Assessment and Degradation Mechanism 被引量:3
3
作者 李郭敏 王冰 王锐 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2020年第9期1675-1688,1556,共15页
The g-C3N4/Ag/GO(CNAG)photocatalysts were synthesized by a facile two-step reaction route.The as-prepared CNAG samples were characterized by X-ray diffraction(XRD),Fourier transform-infrared spectroscopy(FTIR),X-ray p... The g-C3N4/Ag/GO(CNAG)photocatalysts were synthesized by a facile two-step reaction route.The as-prepared CNAG samples were characterized by X-ray diffraction(XRD),Fourier transform-infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL)and ultraviolet-visible diffuse reflectance spectroscopy techniques(UV-vis DRS).The photocatalytic activity was obtained by degrading rhodamine B(RhB)under simulated sunlight and the results showed that photocatalytic activity of CNAG was much higher than that of pure g-C3N4 and g-C3N4/Ag.When the mass ratio of GO was 6%,the as-prepared CNAG-6%sample possessed the highest photocatalytic activity and the kinetic constant of RhB degradation was 0.077 min-1,which was almost 4.3 times higher than that of pure g-C3N4(0.018 min-1)and 2.5 times higher than that of the g-C3N4/Ag(0.031 min-1)composite,respectively.The toxicity of CNAG samples was assessed via seed germination experiment and no significant inhibitory effect was observed.The enhanced photocatalytic activity could be attributed to the synergistic effect of partial surface plasma resonance(SPR)effect of Ag,strong visible light absorption and the high separation efficiency of photon-generated carrier.The CNAG-6%sample exhibited excellent stability during the cycle experiment.Finally,a possible photocatalytic mechanism was proposed. 展开更多
关键词 g-C3N4 g-C3N4/Ag/GO photocatalytic degradation simulated sunlight irradiation toxicity assessment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部