期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Railway subgrade thermal-hydro-mechanical behavior and track irregularity under the sunny-shady slopes effect in seasonal frozen regions 被引量:3
1
作者 REN Juan-juan ZHANG Kai-yao +4 位作者 ZHENG Jian-long WEI Hui ZHANG Yi-chi DU Wei YE Wen-long 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3793-3810,共18页
The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static... The sunny-shady slopes effect is a phenomenon that impacts the temperature distribution of high-speed railway subgrades,resulting in uneven frost heaving deformation on the subgrade surface,which in turn causes static irregularity in the slab track.Based on the hydraulics theory,a thermal-hydro-mechanical(THM)coupled model of frozen soil is established and verified.We explore the process and characteristics of the temperature field and deformation of soil during the freezing process of high-speed railway subgrades and analyze the track irregularity variation law of China Railway Track SystemⅢslab tracks under uneven frost heaving deformation.The results show that,because the left and right slopes of high-speed railway subgrade are exposed to different amounts of solar radiation,which is the key factor causing uneven frost heaving of subgrade.Different strike angles cause changes in temperature of the subgrade’s upper part and the frost heaving amount on the surface,leading to differences in the deformation of the slab track structure:Increased strike angle weakens the rail level irregularity of the down line and marginally increases the rail level irregularity of the up line,and these become consistent in north-south directions.Therefore,when selecting railway lines in seasonal frozen areas,the west-east direction should be avoided to prevent the extremes in sunny-shady slopes effect on subgrades. 展开更多
关键词 frost heaving thermal-hydro-mechanical coupling sunny-shady slopes effect track irregularity
下载PDF
Study on the sunny-shady slope effect on the subgrade of a high-speed railway in a seasonal frozen region 被引量:2
2
作者 QingZhi Wang BoWen Tai +1 位作者 ZhenYa Liu JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2015年第5期513-519,共7页
The temperature distributions of different parts of a subgrade were analyzed based on the results of three years of moni- toring data from the Harbin-Qiqihaer Passenger Dedicated Line, a high-speed railway, including ... The temperature distributions of different parts of a subgrade were analyzed based on the results of three years of moni- toring data from the Harbin-Qiqihaer Passenger Dedicated Line, a high-speed railway, including the slope toes, shoulders, and natural ground. The temperature variation with time and the maximum frozen depths showed that an obvious sun- ny-shady effect exists in the railway subgrade, which spans a seasonal frozen region. Development of frost heave is af- fected by the asymmetric temperature distribution. The temperature field and the maximum frozen depths 50 years after the subgrade was built were simulated with a mathematical model of the unsteady phase transition of the geothermal field. 展开更多
关键词 high-speed railway sunny-shady slope effect frost heave temperature field
下载PDF
Effects of freeze-thaw cycles on sandstone in sunny and shady slopes
3
作者 Dian Xiao Xiaoyan Zhao +3 位作者 Corrado Fidelibus Roberto Tomás Qiu Lu Hongwei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2503-2515,共13页
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha... A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. 展开更多
关键词 sunny-shady slope Freeze and thaw Pore structure Tight rocks Talus slope Cold regions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部