期刊文献+
共找到27,878篇文章
< 1 2 250 >
每页显示 20 50 100
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
1
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
下载PDF
Differentially Private Support Vector Machines with Knowledge Aggregation
2
作者 Teng Wang Yao Zhang +2 位作者 Jiangguo Liang Shuai Wang Shuanggen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3891-3907,共17页
With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most... With the widespread data collection and processing,privacy-preserving machine learning has become increasingly important in addressing privacy risks related to individuals.Support vector machine(SVM)is one of the most elementary learning models of machine learning.Privacy issues surrounding SVM classifier training have attracted increasing attention.In this paper,we investigate Differential Privacy-compliant Federated Machine Learning with Dimensionality Reduction,called FedDPDR-DPML,which greatly improves data utility while providing strong privacy guarantees.Considering in distributed learning scenarios,multiple participants usually hold unbalanced or small amounts of data.Therefore,FedDPDR-DPML enables multiple participants to collaboratively learn a global model based on weighted model averaging and knowledge aggregation and then the server distributes the global model to each participant to improve local data utility.Aiming at high-dimensional data,we adopt differential privacy in both the principal component analysis(PCA)-based dimensionality reduction phase and SVM classifiers training phase,which improves model accuracy while achieving strict differential privacy protection.Besides,we train Differential privacy(DP)-compliant SVM classifiers by adding noise to the objective function itself,thus leading to better data utility.Extensive experiments on three high-dimensional datasets demonstrate that FedDPDR-DPML can achieve high accuracy while ensuring strong privacy protection. 展开更多
关键词 Differential privacy support vector machine knowledge aggregation data utility
下载PDF
Active Fault Tolerant Nonsingular Terminal Sliding Mode Control for Electromechanical System Based on Support Vector Machine
3
作者 Jian Hu Zhengyin Yang Jianyong Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期189-203,共15页
Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant no... Effective fault diagnosis and fault-tolerant control method for aeronautics electromechanical actuator is concerned in this paper.By borrowing the advantages of model-driven and data-driven methods,a fault tolerant nonsingular terminal sliding mode control method based on support vector machine(SVM)is proposed.A SVM is designed to estimate the fault by off-line learning from small sample data with solving convex quadratic programming method and is introduced into a high-gain observer,so as to improve the state estimation and fault detection accuracy when the fault occurs.The state estimation value of the observer is used for state reconfiguration.A novel nonsingular terminal sliding mode surface is designed,and Lyapunov theorem is used to derive a parameter adaptation law and a control law.It is guaranteed that the proposed controller can achieve asymptotical stability which is superior to many advanced fault-tolerant controllers.In addition,the parameter estimation also can help to diagnose the system faults because the faults can be reflected by the parameters variation.Extensive comparative simulation and experimental results illustrate the effectiveness and advancement of the proposed controller compared with several other main-stream controllers. 展开更多
关键词 Aeronautics electromechanical actuator Fault tolerant control Support vector machine State observer Parametric uncertainty
下载PDF
Enhanced Steganalysis for Color Images Using Curvelet Features and Support Vector Machine
4
作者 Arslan Akram Imran Khan +4 位作者 Javed Rashid Mubbashar Saddique Muhammad Idrees Yazeed Yasin Ghadi Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2024年第1期1311-1328,共18页
Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial i... Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods. 展开更多
关键词 CURVELETS fast fourier transformation support vector machine high pass filters STEGANOGRAPHY
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
5
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
HHO optimized support vector machine classifier for traditional Chinese medicine syndrome differentiation of diabetic retinopathy
6
作者 Li Xiao Cheng-Wu Wang +4 位作者 Ying Deng Yi-Jing Yang Jing Lu Jun-Feng Yan Qing-Hua Peng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第6期991-1000,共10页
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel... AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation. 展开更多
关键词 traditional Chinese medicine diabetic retinopathy Harris Hawk Optimization Support vector machine syndrome differentiation
下载PDF
Predicting Turbidite Channel in Deep-Water Canyon Based on Grey Relational Analysis-Support Vector Machine Model:A Case Study of the Lingshui Depression in Qiongdongnan Basin,South China Sea
7
作者 Haichen Li Jianghai Li +1 位作者 Li Li Zhandong Li 《Energy Engineering》 EI 2024年第9期2435-2447,共13页
The turbidite channel of South China Sea has been highly concerned.Influenced by the complex fault and the rapid phase change of lithofacies,predicting the channel through conventional seismic attributes is not accura... The turbidite channel of South China Sea has been highly concerned.Influenced by the complex fault and the rapid phase change of lithofacies,predicting the channel through conventional seismic attributes is not accurate enough.In response to this disadvantage,this study used a method combining grey relational analysis(GRA)and support vectormachine(SVM)and established a set of prediction technical procedures suitable for reservoirs with complex geological conditions.In the case study of the Huangliu Formation in Qiongdongnan Basin,South China Sea,this study first dimensionalized the conventional seismic attributes of Gas Layer Group I and then used the GRA method to obtain the main relational factors.A higher relational degree indicates a higher probability of responding to the attributes of the turbidite channel.This study then accumulated the optimized attributes with the highest relational factors to obtain a first-order accumulated sequence,which was used as the input training sample of the SVM model,thus successfully constructing the SVM turbidite channel model.Drilling results prove that the GRA-SVMmethod has a high drilling coincidence rate.Utilizing the core and logging data and taking full use of the advantages of seismic inversion in predicting the sand boundary of water channels,this study divides the sedimentary microfacies of the Huangliu Formation in the Lingshui 17-2 Gas Field.This comprehensive study has shown that the GRA-SVM method has high accuracy for predicting turbidite channels and can be used as a superior turbidite channel prediction method under complex geological conditions. 展开更多
关键词 Support vector machine CHANNEL Huangliu Formation Qiongdongnan Basin
下载PDF
Performance Analysis of Support Vector Machine (SVM) on Challenging Datasets for Forest Fire Detection
8
作者 Ankan Kar Nirjhar Nath +1 位作者 Utpalraj Kemprai   Aman 《International Journal of Communications, Network and System Sciences》 2024年第2期11-29,共19页
This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to... This article delves into the analysis of performance and utilization of Support Vector Machines (SVMs) for the critical task of forest fire detection using image datasets. With the increasing threat of forest fires to ecosystems and human settlements, the need for rapid and accurate detection systems is of utmost importance. SVMs, renowned for their strong classification capabilities, exhibit proficiency in recognizing patterns associated with fire within images. By training on labeled data, SVMs acquire the ability to identify distinctive attributes associated with fire, such as flames, smoke, or alterations in the visual characteristics of the forest area. The document thoroughly examines the use of SVMs, covering crucial elements like data preprocessing, feature extraction, and model training. It rigorously evaluates parameters such as accuracy, efficiency, and practical applicability. The knowledge gained from this study aids in the development of efficient forest fire detection systems, enabling prompt responses and improving disaster management. Moreover, the correlation between SVM accuracy and the difficulties presented by high-dimensional datasets is carefully investigated, demonstrated through a revealing case study. The relationship between accuracy scores and the different resolutions used for resizing the training datasets has also been discussed in this article. These comprehensive studies result in a definitive overview of the difficulties faced and the potential sectors requiring further improvement and focus. 展开更多
关键词 Support vector machine Challenging Datasets Forest Fire Detection CLASSIFICATION
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
9
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms 被引量:5
10
作者 Chuanqi Li Jian Zhou +1 位作者 Kun Du Daniel Dias 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1019-1036,共18页
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet... Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability. 展开更多
关键词 Underground pillar stability Hard rock Support vector machine Metaheuristic algorithms
下载PDF
Machine learning model based on non-convex penalized huberized-SVM
11
作者 Peng Wang Ji Guo Lin-Feng Li 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期81-94,共14页
The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss i... The support vector machine(SVM)is a classical machine learning method.Both the hinge loss and least absolute shrinkage and selection operator(LASSO)penalty are usually used in traditional SVMs.However,the hinge loss is not differentiable,and the LASSO penalty does not have the Oracle property.In this paper,the huberized loss is combined with non-convex penalties to obtain a model that has the advantages of both the computational simplicity and the Oracle property,contributing to higher accuracy than traditional SVMs.It is experimentally demonstrated that the two non-convex huberized-SVM methods,smoothly clipped absolute deviation huberized-SVM(SCAD-HSVM)and minimax concave penalty huberized-SVM(MCP-HSVM),outperform the traditional SVM method in terms of the prediction accuracy and classifier performance.They are also superior in terms of variable selection,especially when there is a high linear correlation between the variables.When they are applied to the prediction of listed companies,the variables that can affect and predict financial distress are accurately filtered out.Among all the indicators,the indicators per share have the greatest influence while those of solvency have the weakest influence.Listed companies can assess the financial situation with the indicators screened by our algorithm and make an early warning of their possible financial distress in advance with higher precision. 展开更多
关键词 Huberized loss machine learning Non-convex penalties Support vector machine(SVM)
下载PDF
Comparative study of different machine learning models in landslide susceptibility assessment: A case study of Conghua District, Guangzhou, China
12
作者 Ao Zhang Xin-wen Zhao +8 位作者 Xing-yuezi Zhao Xiao-zhan Zheng Min Zeng Xuan Huang Pan Wu Tuo Jiang Shi-chang Wang Jun He Yi-yong Li 《China Geology》 CAS CSCD 2024年第1期104-115,共12页
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co... Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems. 展开更多
关键词 Landslides susceptibility assessment machine learning Logistic Regression Random Forest Support vector machines XGBoost Assessment model Geological disaster investigation and prevention engineering
下载PDF
Dynamic Hand Gesture-Based Person Identification Using Leap Motion and Machine Learning Approaches
13
作者 Jungpil Shin Md.AlMehedi Hasan +2 位作者 Md.Maniruzzaman Taiki Watanabe Issei Jozume 《Computers, Materials & Continua》 SCIE EI 2024年第4期1205-1222,共18页
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f... Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security. 展开更多
关键词 Person identification leap motion hand gesture random forest support vector machine
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition
14
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI
15
作者 Saad Akbar Humera Azam +3 位作者 Sulaiman Sulmi Almutairi Omar Alqahtani Habib Shah Aliya Aleryani 《Computers, Materials & Continua》 SCIE EI 2024年第7期1075-1104,共30页
The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools.In this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplo... The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools.In this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19,pneumonia,and normal conditions in chest X-ray images(CXIs)is proposed coupled with Explainable Artificial Intelligence(XAI).Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3,VGG16,and VGG19 that excel in the task of feature extraction.The methodology is further enhanced by the inclusion of the t-SNE(t-Distributed Stochastic Neighbor Embedding)technique for visualizing the extracted image features and Contrast Limited Adaptive Histogram Equalization(CLAHE)to improve images before extraction of features.Additionally,an AttentionMechanism is utilized,which helps clarify how the modelmakes decisions,which builds trust in artificial intelligence(AI)systems.To evaluate the effectiveness of the proposed approach,both benchmark datasets and a private dataset obtained with permissions from Jinnah PostgraduateMedical Center(JPMC)in Karachi,Pakistan,are utilized.In 12 experiments,VGG19 showcased remarkable performance in the hybrid dataset approach,achieving 100%accuracy in COVID-19 vs.pneumonia classification and 97%in distinguishing normal cases.Overall,across all classes,the approach achieved 98%accuracy,demonstrating its efficiency in detecting COVID-19 and differentiating it fromother chest disorders(Pneumonia and healthy)while also providing insights into the decision-making process of the models. 展开更多
关键词 COVID-19 detection deep neural networks support vector machine CXIs InceptionV3 VGG16 VGG19 t-SNE embedding CLAHE attention mechanism XAI
下载PDF
Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine 被引量:1
16
作者 Iftikhar Naseer Tehreem Masood +3 位作者 Sheeraz Akram Arfan Jaffar Muhammad Rashid Muhammad Amjad Iqbal 《Computers, Materials & Continua》 SCIE EI 2023年第1期2039-2054,共16页
Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a sig... Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a significant role in detecting and screening lung cancer in Computed tomography(CT)scan images.Early detection plays an important role in the survival rate and treatment of lung cancer patients.Moreover,pulmonary nodule classification techniques based on the convolutional neural network can be used for the accurate and efficient detection of lung cancer.This work proposed an automatic nodule detection method in CT images based on modified AlexNet architecture and Support vector machine(SVM)algorithm namely LungNet-SVM.The proposed model consists of seven convolutional layers,three pooling layers,and two fully connected layers used to extract features.Support vector machine classifier is applied for the binary classification of nodules into benign andmalignant.The experimental analysis is performed by using the publicly available benchmark dataset Lung nodule analysis 2016(LUNA16).The proposed model has achieved 97.64%of accuracy,96.37%of sensitivity,and 99.08%of specificity.A comparative analysis has been carried out between the proposed LungNet-SVM model and existing stateof-the-art approaches for the classification of lung cancer.The experimental results indicate that the proposed LungNet-SVM model achieved remarkable performance on a LUNA16 dataset in terms of accuracy. 展开更多
关键词 Lung cancer alexnet luna16 computed tomography support vector machine
下载PDF
Facial Expression Recognition Model Depending on Optimized Support Vector Machine 被引量:1
17
作者 Amel Ali Alhussan Fatma M.Talaat +4 位作者 El-Sayed M.El-kenawy Abdelaziz A.Abdelhamid Abdelhameed Ibrahim Doaa Sami Khafaga Mona Alnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第7期499-515,共17页
In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According t... In computer vision,emotion recognition using facial expression images is considered an important research issue.Deep learning advances in recent years have aided in attaining improved results in this issue.According to recent studies,multiple facial expressions may be included in facial photographs representing a particular type of emotion.It is feasible and useful to convert face photos into collections of visual words and carry out global expression recognition.The main contribution of this paper is to propose a facial expression recognitionmodel(FERM)depending on an optimized Support Vector Machine(SVM).To test the performance of the proposed model(FERM),AffectNet is used.AffectNet uses 1250 emotion-related keywords in six different languages to search three major search engines and get over 1,000,000 facial photos online.The FERM is composed of three main phases:(i)the Data preparation phase,(ii)Applying grid search for optimization,and(iii)the categorization phase.Linear discriminant analysis(LDA)is used to categorize the data into eight labels(neutral,happy,sad,surprised,fear,disgust,angry,and contempt).Due to using LDA,the performance of categorization via SVM has been obviously enhanced.Grid search is used to find the optimal values for hyperparameters of SVM(C and gamma).The proposed optimized SVM algorithm has achieved an accuracy of 99%and a 98%F1 score. 展开更多
关键词 Facial expression recognition machine learning linear dis-criminant analysis(LDA) support vector machine(SVM) grid search
下载PDF
Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection 被引量:1
18
作者 Jahanzaib Latif Shanshan Tu +3 位作者 Chuangbai Xiao Anas Bilal Sadaqat Ur Rehman Zohaib Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第7期1151-1172,共22页
Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require special... Glaucoma is a progressive eye disease that can lead to blindness if left untreated.Early detection is crucial to prevent vision loss,but current manual scanning methods are expensive,time-consuming,and require specialized expertise.This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine(EGWO-SVM)method.The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter(AMF)and feature extraction using the previously processed speeded-up robust feature(SURF),histogram of oriented gradients(HOG),and Global features.The enhanced Grey Wolf Optimization(GWO)technique is then employed with SVM for classification.To evaluate the proposed method,we used the online retinal images for glaucoma analysis(ORIGA)database,and it achieved high accuracy,sensitivity,and specificity rates of 94%,92%,and 92%,respectively.The results demonstrate that the proposed method outperforms other current algorithms in detecting the presence or absence of Glaucoma.This study provides a novel and effective approach to Glaucoma detection that can potentially improve the detection process and outcomes. 展开更多
关键词 Glaucoma detection grey golf optimization support vector machine feature extraction image classification
下载PDF
Chaotic Elephant Herd Optimization with Machine Learning for Arabic Hate Speech Detection
19
作者 Badriyya B.Al-onazi Jaber S.Alzahrani +5 位作者 Najm Alotaibi Hussain Alshahrani Mohamed Ahmed Elfaki Radwa Marzouk Heba Mohsen Abdelwahed Motwakel 《Intelligent Automation & Soft Computing》 2024年第3期567-583,共17页
In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that op... In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales.This is attributed to business owners’understanding of social media’s importance for business development.However,the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns.Hate speech over online social networking sites turns out to be a worldwide issue that reduces the cohesion of civil societies.In this background,the current study develops a Chaotic Elephant Herd Optimization with Machine Learning for Hate Speech Detection(CEHOML-HSD)model in the context of the Arabic language.The presented CEHOML-HSD model majorly concentrates on identifying and categorising the Arabic text into hate speech and normal.To attain this,the CEHOML-HSD model follows different sub-processes as discussed herewith.At the initial stage,the CEHOML-HSD model undergoes data pre-processing with the help of the TF-IDF vectorizer.Secondly,the Support Vector Machine(SVM)model is utilized to detect and classify the hate speech texts made in the Arabic language.Lastly,the CEHO approach is employed for fine-tuning the parameters involved in SVM.This CEHO approach is developed by combining the chaotic functions with the classical EHO algorithm.The design of the CEHO algorithm for parameter tuning shows the novelty of the work.A widespread experimental analysis was executed to validate the enhanced performance of the proposed CEHOML-HSD approach.The comparative study outcomes established the supremacy of the proposed CEHOML-HSD model over other approaches. 展开更多
关键词 Arabic language machine learning elephant herd optimization TF-IDF vectorizer hate speech detection
下载PDF
Least Squares One-Class Support Tensor Machine
20
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 Least Square One-Class Support Tensor machine One-Class Classification Upscale Least Square One-Class Support vector machine One-Class Support Tensor machine
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部