Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit...Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.展开更多
CO2-shielded welding experiments of newly developed, 780 MPa super-high strength heavy-duty truck crossbeam steel were conducted, and the microstructure, microhardness, mechanical properties, and impact tough- hess of...CO2-shielded welding experiments of newly developed, 780 MPa super-high strength heavy-duty truck crossbeam steel were conducted, and the microstructure, microhardness, mechanical properties, and impact tough- hess of the welded joint were studied. The evolution of the microstructure of the welded joint occurred as follows.. welding seam (acicular ferrite+proeutectoid ferrite)→fusion zone (granular bainite-long strip M/A island)→coarse grain zone (granular bainite-long strip or short bar M/A island)→fine grain zone (ferrite+ pearlite+ blocky M/A is- land)→mixed grained zone (ferrite+granular bainite+blocky M/A island)→base metal (proeutectoid ferrite+gran- ular bainite-hlocky or granular M/A island). Increasing the density of the grain boundaries can effectively improve the impact toughness, and the blocky M/A island hindered crack propagation more effectively than the long strip M/A island. The new hot-rolled 780 MPa super-high strength steel had excellent weldability. The welding technology was applied under the following conditions: welding voltage was 20 to 21 V, welding current was 200 to 210 A, and the gas flow rate was 25 L/rain.展开更多
文摘Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.
基金Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China (2006BAE03A08)Special Program for Key Research of National Basic Research Program of China (2011CB606306-2)Fundamental Research Funds for Central Universities of China (N090607003)
文摘CO2-shielded welding experiments of newly developed, 780 MPa super-high strength heavy-duty truck crossbeam steel were conducted, and the microstructure, microhardness, mechanical properties, and impact tough- hess of the welded joint were studied. The evolution of the microstructure of the welded joint occurred as follows.. welding seam (acicular ferrite+proeutectoid ferrite)→fusion zone (granular bainite-long strip M/A island)→coarse grain zone (granular bainite-long strip or short bar M/A island)→fine grain zone (ferrite+ pearlite+ blocky M/A is- land)→mixed grained zone (ferrite+granular bainite+blocky M/A island)→base metal (proeutectoid ferrite+gran- ular bainite-hlocky or granular M/A island). Increasing the density of the grain boundaries can effectively improve the impact toughness, and the blocky M/A island hindered crack propagation more effectively than the long strip M/A island. The new hot-rolled 780 MPa super-high strength steel had excellent weldability. The welding technology was applied under the following conditions: welding voltage was 20 to 21 V, welding current was 200 to 210 A, and the gas flow rate was 25 L/rain.