In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended (2 + 1)-dimensional shallow water wave equation and (2 + 1)-dimensional Sawada -Kotera equation in a ...In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended (2 + 1)-dimensional shallow water wave equation and (2 + 1)-dimensional Sawada -Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.展开更多
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio...Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.展开更多
With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pemp...With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pempinelli equation. Then, the corresponding figures of the periodic wave solutions are given. Fhrthermore, it is shown that the known soliton solutions can be reduced from the periodic wave solutions.展开更多
In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in ...In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.展开更多
In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized...In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.展开更多
By employing Hirota bilinear method and Riemann theta functions of genus one,explicit triply periodic wave solutions for the(2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u =(1...By employing Hirota bilinear method and Riemann theta functions of genus one,explicit triply periodic wave solutions for the(2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u =(1 /6)(u0 1) + 2[ln f(x,y,t)] xx,four kinds of triply periodic wave solutions are derived,and their long wave limit are discussed.The properties of one of the solutions are shown in Fig.1.展开更多
In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equat...In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation.Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof.展开更多
In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the ...In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11075055,61021004,10735030Shanghai Leading Academic Discipline Project under Grant No.B412Program for Changjiang Scholars and Innovative Research Team in University(IRT0734)
文摘In the present letter, we get the appropriate bilinear forms of (2 + 1)-dimensional KdV equation, extended (2 + 1)-dimensional shallow water wave equation and (2 + 1)-dimensional Sawada -Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.
基金The project supported by National Natural Science Foundation of China under Grant No.10771196the Natural Science Foundation of Zhejiang Province under Grant No.Y605044
文摘Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006,Chinese Ministry of Education
文摘With symbolic computation, the Hirota method and Riemann theta function are employed to directly construct the periodic wave solutions for the Hirota-Satsuma equation for shallow water waves and Boiti-Leon-Manna- Pempinelli equation. Then, the corresponding figures of the periodic wave solutions are given. Fhrthermore, it is shown that the known soliton solutions can be reduced from the periodic wave solutions.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1412800 the Innovation Program of Shanghai Municipal Education Commission under Grant No.10ZZ131
文摘In this paper,multi-periodic (quasi-periodic) wave solutions are constructed for the Boiti-Leon-Manna-Pempinelli(BLMP) equation by using Hirota bilinear method and Riemann theta function.At the same time,weanalyze in details asymptotic properties of the multi-periodic wave solutions and give their asymptotic relations betweenthe periodic wave solutions and the soliton solutions.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013QNA41Natural Sciences Foundation of China under Grant Nos.11301527 and 11371361the Construction Project of the Key Discipline in Universities for 12th Five-year Plans by Jiangsu Province
文摘In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.
基金Supported by the National Natural Science Foundation of China under Grant No. 11101382the Natural Science Foundation of Henan Province under Grant No. 2010A110001the Basic and Advanced Technology Project of Henan Province under Grant No. 112300410199
文摘By employing Hirota bilinear method and Riemann theta functions of genus one,explicit triply periodic wave solutions for the(2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u =(1 /6)(u0 1) + 2[ln f(x,y,t)] xx,four kinds of triply periodic wave solutions are derived,and their long wave limit are discussed.The properties of one of the solutions are shown in Fig.1.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013QNA41Natural Sciences Foundation of China under Grant Nos.11301527 and 11371361the Key Discipline in Universities for 12th Five-Year Plans by Jiangsu Province
文摘In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation.Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030 and 11075055Innovative Research Team Program of the National Natural Science Foundation of China under Grant No. 61021004
文摘In this paper, the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials. The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function, respectively. And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution. In the end, the bilinear Backlund transformations are derived.