For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise...For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.展开更多
为真实反映超厚湿陷性黄土区超高层型钢混凝土(Super High Rise-Steel Reinforced Concrete,简称SHR-SRC)结构在施工过程中沉降特征随上部载荷的变化规律,并指导安全施工,在试验场区建立了一套完整的沉降监测体系,动态追踪测试了超高层...为真实反映超厚湿陷性黄土区超高层型钢混凝土(Super High Rise-Steel Reinforced Concrete,简称SHR-SRC)结构在施工过程中沉降特征随上部载荷的变化规律,并指导安全施工,在试验场区建立了一套完整的沉降监测体系,动态追踪测试了超高层结构在整个施工周期2年6个月内的沉降变形等原始数据.利用实际监测结果,结合ABAQUS有限元分析,对SRC结构沉降特性进行了系统分析.结果表明:施工过程中,SHR-SRC结构整体沉降较为均匀,最大沉降速率为0.28 mm/d;距离核心筒附近的地下试桩点位正、负应变值小,远处则相反;土体在施工强度平缓状况下,局部会出现短暂的"回弹"现象;模拟显示筏板底中心桩顶位移最大,边桩次之,角桩最小,同一桩产生沉降差说明桩本身存在轴向压缩;但由于黄土地基及结构受力的复杂性,相关规律需进一步分析与探讨.展开更多
基金National Natural Science Foundation of China Under Grant No.50908044 Jiangsu Provincial Natural Science Foundation of China Under Grant No.SBK201123270 a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and StateKey Lab of Subtropical Building Science,South China University of Technology Under Grant No.2011KA05
文摘For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response.