Through anisotropic Ag overgrowth on the surface of Au nanobipyramids(Au NBPs), high-purity and sizecontrolled Ag nanorods(Au/Ag NRs) are obtained by a simplified purification process. The diameters of the Au/Ag NRs a...Through anisotropic Ag overgrowth on the surface of Au nanobipyramids(Au NBPs), high-purity and sizecontrolled Ag nanorods(Au/Ag NRs) are obtained by a simplified purification process. The diameters of the Au/Ag NRs are determined by the size of the as-prepared Au NBPs, and the lengths of the Au/Ag NRs are tunable using different amounts of Ag precursor in the growth solution. Surface-enhanced Raman scattering(SERS) studies using Rhodamine-6G(R6G) as a test molecule indicate that the Au/Ag NRs have excellent sensing potential. The tunable optical properties and strong electromagnetic effect of the Au/Ag NRs, along with their superior SERS signal enhancement, show that Au/Ag NRs are promising for further applications in plasmon sensing and biomolecular detection.展开更多
Many biological surfaces possess unusual micro-nano hierarchical structures that could influence their wettability, which provide new methods for the construction of novel materials. In this work, silver nanoparticles...Many biological surfaces possess unusual micro-nano hierarchical structures that could influence their wettability, which provide new methods for the construction of novel materials. In this work, silver nanoparticles were successfully coated on the surface of stainless steel needle by a simple electroless replacement reaction process between the AgNO3 solution and the activated stainless steel needle. After the replacement reaction, porous micro/nanostructures were formed on the surface of the stainless steel needle. By modifying long chains ofthiol molecules, the stainless steel needle exhibited good super-hydrophobic property with a contact angle greater than 150°. Moreover, the silver coated stainless steel needle (bionic needle) showed strong antibacterial activity against the gram-negative bacterium Escherichia coli (E. colO. By calculating the area of the inhibition zone against E. coil formed on agar medium, the antibacterial activity of the bionic needle with the contact angle of 152° is much better than that with the contact angle of 138°. The as-prepared bionic needle with both super-hydrophobie and antibacterial properties has the potential to be applied in modem medical devices.展开更多
基金National Natural Science Foundation of China(NSFC)(11274173,11374159)Jiangsu Innovation Program for Graduate Education(KYZZ_0091)+1 种基金Scientific Foundation of Nanjing Institute of Technology(CKJB201411,QKJB201409,YKJ201538)Qing Lan Project and Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Through anisotropic Ag overgrowth on the surface of Au nanobipyramids(Au NBPs), high-purity and sizecontrolled Ag nanorods(Au/Ag NRs) are obtained by a simplified purification process. The diameters of the Au/Ag NRs are determined by the size of the as-prepared Au NBPs, and the lengths of the Au/Ag NRs are tunable using different amounts of Ag precursor in the growth solution. Surface-enhanced Raman scattering(SERS) studies using Rhodamine-6G(R6G) as a test molecule indicate that the Au/Ag NRs have excellent sensing potential. The tunable optical properties and strong electromagnetic effect of the Au/Ag NRs, along with their superior SERS signal enhancement, show that Au/Ag NRs are promising for further applications in plasmon sensing and biomolecular detection.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 50875108).
文摘Many biological surfaces possess unusual micro-nano hierarchical structures that could influence their wettability, which provide new methods for the construction of novel materials. In this work, silver nanoparticles were successfully coated on the surface of stainless steel needle by a simple electroless replacement reaction process between the AgNO3 solution and the activated stainless steel needle. After the replacement reaction, porous micro/nanostructures were formed on the surface of the stainless steel needle. By modifying long chains ofthiol molecules, the stainless steel needle exhibited good super-hydrophobic property with a contact angle greater than 150°. Moreover, the silver coated stainless steel needle (bionic needle) showed strong antibacterial activity against the gram-negative bacterium Escherichia coli (E. colO. By calculating the area of the inhibition zone against E. coil formed on agar medium, the antibacterial activity of the bionic needle with the contact angle of 152° is much better than that with the contact angle of 138°. The as-prepared bionic needle with both super-hydrophobie and antibacterial properties has the potential to be applied in modem medical devices.