A new super junction LDMOST structure that suppresses the substrate-assisted depletion effect is designed with an n^+-floating layer embedded in the high-resistance p-type substrate by implanting phosphor or arsenic....A new super junction LDMOST structure that suppresses the substrate-assisted depletion effect is designed with an n^+-floating layer embedded in the high-resistance p-type substrate by implanting phosphor or arsenic. This effect results from a charge imbalance between the n-type and p-type pillars when the n-type pillars are depleted by p-type substrate. The high electric field around the drain is reduced by the n^+-floating layer due to the REBULF effect,which causes the redistribution of the bulk electric field in the drift region,and thus the substrate supports more biases. The new structure features high breakdown voltage, low on-resistance,and charge balance in the drift region.展开更多
This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, ne...This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication.展开更多
Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on h...Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on how the mesa width design determines the device electrical performances and how it affects the degree of performance degradation induced by process variations. It is found that structures designed with narrower mesa widths can tolerant substantially larger charge imbalance for a given BV target, but have poor specific on-resistances. On the contrary, structures with wider mesa widths have superior on-state performances but their breakdown voltages are more sensitive to p-type doping variation. Medium WM structures (-2 p.m) exhibit stronger robustness against the process variation resulting from SiC deep trench etching. Devices with 2-p.m mesa width were fabricated and electrically characterized. The fabricated SiC SJ SBDs have achieved a breakdown voltage of 1350 V with a specific on-resistance as low as 0.98 mΩ2.cm2. The estimated specific drift on- resistance by subtracting substrate resistance is well below the theoretical one-dimensional unipolar limit of SiC material. The robustness of the voltage blocking capability against trench dimension variations has also been experimentally verified for the proposed SiC SJ SBD devices.展开更多
This paper proposes a novel super junction (S J) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained ...This paper proposes a novel super junction (S J) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm^2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66V whereas that of the SJ SiGe diode is only 0.52V voltages are 203 V for the former and 235 V for the latter. at operating current density of 10A/cm^2. The breakdown Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.展开更多
A novel trench field stop(TFS) IGBT with a super junction(SJ) floating layer(SJ TFS-IGBT) is proposed. This IGBT presents a high blocking voltage(〉 1200 V),low on-state voltage drop and fast turn-off capabili...A novel trench field stop(TFS) IGBT with a super junction(SJ) floating layer(SJ TFS-IGBT) is proposed. This IGBT presents a high blocking voltage(〉 1200 V),low on-state voltage drop and fast turn-off capability.A SJ floating layer with a high doping concentration introduces a new electric field peak at the anode side and optimizes carrier distribution,which will improve the breakdown voltage in the off-state and decrease the energy loss in the on-state /switching state for the SJ TFS-IGBT.A low on-state voltage(VF) and a high breakdown voltage(BV) can be achieved by increasing the thickness of the SJ floating layer under the condition of exact charge balance.A low turn-off loss can be achieved by decreasing the concentration of the P-anode.Simulation results show that the BV is enhanced by 100 V,VF is decreased by 0.33 V(at 100 A/cm2) and the turn-off time is shortened by 60%,compared with conventional TFS-IGBTs.展开更多
The lateral super junction (SJ) power devices suffer the substrate-assisted depletion (SAD) effect, which breaks the charge balance of SJ resulting in the low breakdown voltage (BV). A solution based on enhancin...The lateral super junction (SJ) power devices suffer the substrate-assisted depletion (SAD) effect, which breaks the charge balance of SJ resulting in the low breakdown voltage (BV). A solution based on enhancing the electric field of the dielectric buried layer is investigated for improving the BV of super junction LDMOSFET (SJ-LDMOS). High density interface charges enhance the electric field in the buried oxide (BOX) layer to increase the block voltage of BOX, which suppresses the SAD effect to achieve the charge balance of SJ. In order to obtain the linear enhancement of electric field, SO1 SJ-LDMOS with trenched BOX is presented. Because the trenched BOX self-adaptively collects holes according to the variable electric field strength, the approximate linear charge distribution is formed on the surface of the BOX to enhance the electric field according to the need. As a result, the charge balance between N and P pillars of SJ is achieved, which improves the BV of SJ-LDMOS to close that of the idea SJ structure.展开更多
A novel multiple super junction (MS J) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are int...A novel multiple super junction (MS J) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface S J; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D- depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom S J, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm.展开更多
The super junction(SJ) has been recognized as the "milestone" of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer(VSL). The basic structure of the SJ is a typical ...The super junction(SJ) has been recognized as the "milestone" of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer(VSL). The basic structure of the SJ is a typical junction-type VSL(J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL(R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the JVSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional"silicon limit" relationship of R_(on)∝V_B^(2.5), showing a quasi-linear relationship of R_(on)∝V_B^(1.03).展开更多
In this paper, we propose a novel low on-resistance Super Junction (S J) Lateral Double-diffusion MOSFET (LDMOST) which has split p column structures with rated voltage of 60-100V. The key feature of this new stru...In this paper, we propose a novel low on-resistance Super Junction (S J) Lateral Double-diffusion MOSFET (LDMOST) which has split p column structures with rated voltage of 60-100V. The key feature of this new structure is that the split p column super junction primarily provides the low on-resistance path and it just locates at the surface of the drift region rather than the entire drift region. The manufacturing process of the device is relatively simple and is compatible with the Bi-CMOS process. Three dimension device simulations indicate that this structure can achieve a low specific on-resistance of 11.5 mΩ·cm^2 at a gate voltage of 5 V compared with 27.7 mΩ·cm^2 for the conventional LDMOST at the breakdown voltage of 80V.展开更多
A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge...A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.展开更多
A new super-junction lateral double diffused MOSFET (LDMOST) structure is designed with n-type charge compensation layer embedded in the p^--substrate near the drain to suppress substrate-assisted depletion effect t...A new super-junction lateral double diffused MOSFET (LDMOST) structure is designed with n-type charge compensation layer embedded in the p^--substrate near the drain to suppress substrate-assisted depletion effect that results from the compensating charges imbalance between the pillars in the n-type buried layer. A high electric field peak is introduced in the surface by the pn junction between the p^--substrate and n-type buried layer, which given rise to a more uniform surface electric field distribution by modulation effect. The effect of reduced bulk field (REBULF) is introduced to improve the vertical breakdown voltage by reducing the high bulk electric field around the drain, The new structure features high breakdown voltage, low on-resistance and charges balance in the drift region due to n-type buried layer.展开更多
文摘A new super junction LDMOST structure that suppresses the substrate-assisted depletion effect is designed with an n^+-floating layer embedded in the high-resistance p-type substrate by implanting phosphor or arsenic. This effect results from a charge imbalance between the n-type and p-type pillars when the n-type pillars are depleted by p-type substrate. The high electric field around the drain is reduced by the n^+-floating layer due to the REBULF effect,which causes the redistribution of the bulk electric field in the drift region,and thus the substrate supports more biases. The new structure features high breakdown voltage, low on-resistance,and charge balance in the drift region.
基金supported by the Doctor Scientific Research Start-up Foundation of Xi'an University of Technology of China
文摘This paper proposes an oxide filled extended trench gate super junction (SJ) MOSFET structure to meet the need of higher frequency power switches application. Compared with the conventional trench gate SJ MOSFET, new structure has the smaller input and output capacitances, and the remarkable improvements in the breakdown voltage, on-resistance and switching speed. Furthermore, the SJ in the new structure can be realized by the existing trench etching and shallow angle implantation, which offers more freedom to SJ MOSFET device design and fabrication.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400502)the National Natural Science Foundation of China(Grant Nos.U1766222 and 51777187)
文摘Mesa width (WM) is a key design parameter for SiC super junction (SJ) Schottky diodes (SBD) fabricated by the trench-etching-and-sidewall-implant method. This paper carries out a comprehensive investigation on how the mesa width design determines the device electrical performances and how it affects the degree of performance degradation induced by process variations. It is found that structures designed with narrower mesa widths can tolerant substantially larger charge imbalance for a given BV target, but have poor specific on-resistances. On the contrary, structures with wider mesa widths have superior on-state performances but their breakdown voltages are more sensitive to p-type doping variation. Medium WM structures (-2 p.m) exhibit stronger robustness against the process variation resulting from SiC deep trench etching. Devices with 2-p.m mesa width were fabricated and electrically characterized. The fabricated SiC SJ SBDs have achieved a breakdown voltage of 1350 V with a specific on-resistance as low as 0.98 mΩ2.cm2. The estimated specific drift on- resistance by subtracting substrate resistance is well below the theoretical one-dimensional unipolar limit of SiC material. The robustness of the voltage blocking capability against trench dimension variations has also been experimentally verified for the proposed SiC SJ SBD devices.
基金Project supported by the National Natural Science Foundation of China (Grant No 50477012)the Doctoral Program Foundation of Institutes of Higher Education of China (Grant No 20050700006)the Special Scientific Research Program of the Education Bureau of Shaanxi Province,China (Grant No 05JK268)
文摘This paper proposes a novel super junction (S J) SiGe switching power diode which has a columnar structure of alternating p- and n- doped pillar substituting conventional n- base region and has far thinner strained SiGe p+ layer to overcome the drawbacks of existing Si switching power diode. The SJ SiGe diode can achieve low specific on-resistance, high breakdown voltages and fast switching speed. The results indicate that the forward voltage drop of SJ SiGe diode is much lower than that of conventional Si power diode when the operating current densities do not exceed 1000 A/cm^2, which is very good for getting lower operating loss. The forward voltage drop of the Si diode is 0.66V whereas that of the SJ SiGe diode is only 0.52V voltages are 203 V for the former and 235 V for the latter. at operating current density of 10A/cm^2. The breakdown Compared with the conventional Si power diode, the reverse recovery time of SJ SiGe diode with 20 per cent Ge content is shortened by above a half and the peak reverse current is reduced by over 15%. The SJ SiGe diode can remarkably improve the characteristics of power diode by combining the merits of both SJ structure and SiGe material.
基金Project supported by the National Natural Science Foundation of China(No.60906038)the Science-Technology Foundation for Young Scientist of University of Electronic Science and Technology of China(No.L08010301JX0830)
文摘A novel trench field stop(TFS) IGBT with a super junction(SJ) floating layer(SJ TFS-IGBT) is proposed. This IGBT presents a high blocking voltage(〉 1200 V),low on-state voltage drop and fast turn-off capability.A SJ floating layer with a high doping concentration introduces a new electric field peak at the anode side and optimizes carrier distribution,which will improve the breakdown voltage in the off-state and decrease the energy loss in the on-state /switching state for the SJ TFS-IGBT.A low on-state voltage(VF) and a high breakdown voltage(BV) can be achieved by increasing the thickness of the SJ floating layer under the condition of exact charge balance.A low turn-off loss can be achieved by decreasing the concentration of the P-anode.Simulation results show that the BV is enhanced by 100 V,VF is decreased by 0.33 V(at 100 A/cm2) and the turn-off time is shortened by 60%,compared with conventional TFS-IGBTs.
基金Project supported by the National Natural Science Foundation of China(No.60576052)the Shanxi Youth Science and Technology Research Foundation of China(No.2010021015-3)
文摘The lateral super junction (SJ) power devices suffer the substrate-assisted depletion (SAD) effect, which breaks the charge balance of SJ resulting in the low breakdown voltage (BV). A solution based on enhancing the electric field of the dielectric buried layer is investigated for improving the BV of super junction LDMOSFET (SJ-LDMOS). High density interface charges enhance the electric field in the buried oxide (BOX) layer to increase the block voltage of BOX, which suppresses the SAD effect to achieve the charge balance of SJ. In order to obtain the linear enhancement of electric field, SO1 SJ-LDMOS with trenched BOX is presented. Because the trenched BOX self-adaptively collects holes according to the variable electric field strength, the approximate linear charge distribution is formed on the surface of the BOX to enhance the electric field according to the need. As a result, the charge balance between N and P pillars of SJ is achieved, which improves the BV of SJ-LDMOS to close that of the idea SJ structure.
基金Project supported by the State key Laboratory of Electronic Thin Films and Integrated Devices(UESTC)of China(No.KFJJ201205)the Guangxi Natural Science Foundation(No.2013GXNSFGA019003)the China Postdoctoral Science Foundation Funded Project(Nos.2012M521127,2013T60566)
文摘A novel multiple super junction (MS J) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface S J; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D- depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom S J, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm.
文摘The super junction(SJ) has been recognized as the "milestone" of the power MOSFET, which is the most important innovation concept of the voltage-sustaining layer(VSL). The basic structure of the SJ is a typical junction-type VSL(J-VSL) with the periodic N and P regions. However, the conventional VSL is a typical resistance-type VSL(R-VSL) with only an N or P region. It is a qualitative change of the VSL from the R-VSL to the JVSL, introducing the bulk depletion to increase the doping concentration and optimize the bulk electric field of the SJ. This paper firstly summarizes the development of the SJ, and then the optimization theory of the SJ is discussed for both the vertical and the lateral devices, including the non-full depletion mode, the minimum specific on-resistance optimization method and the equivalent substrate model. The SJ concept breaks the conventional"silicon limit" relationship of R_(on)∝V_B^(2.5), showing a quasi-linear relationship of R_(on)∝V_B^(1.03).
基金Supported by National Natural Science Foundation of China. (No. 60576052) and The Key Program Project of National Science Foundation of China. (No. 60436030)
文摘In this paper, we propose a novel low on-resistance Super Junction (S J) Lateral Double-diffusion MOSFET (LDMOST) which has split p column structures with rated voltage of 60-100V. The key feature of this new structure is that the split p column super junction primarily provides the low on-resistance path and it just locates at the surface of the drift region rather than the entire drift region. The manufacturing process of the device is relatively simple and is compatible with the Bi-CMOS process. Three dimension device simulations indicate that this structure can achieve a low specific on-resistance of 11.5 mΩ·cm^2 at a gate voltage of 5 V compared with 27.7 mΩ·cm^2 for the conventional LDMOST at the breakdown voltage of 80V.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2010ZX02201)the National Natural Science Foundation of China (Grant No. 61176069)the National Defense Pre-Research of China (Grant No. 51308020304)
文摘A novel super-junction lateral double-diffused metal-oxide semiconductor (SJ-LDMOS) with a partial lightly doped P pillar (PD) is proposed. Firstly, the reduction in the partial P pillar charges ensures the charge balance and suppresses the substrate-assisted depletion effect. Secondly, the new electric field peak produced by the P/P junction modulates the surface electric field distribution. Both of these result in a high breakdown voltage (BV). In addition, due to the same conduction paths, the specific on-resistance (Ron,sp) of the PD SJ-LDMOS is approximately identical to the conventional SJ-LDMOS. Simulation results indicate that the average value of the surface lateral electric field of the PD SJ-LDMOS reaches 20 V/μm at a 15 μm drift length, resulting in a BV of 300 V.
基金Project supported by the National Natural Science Foundation of China (Grant No 60436030) and the Key Laboratory for Defence Science and Technology on Military Simulation Integrated Circuits (Grant No 9140C0903010604).
文摘A new super-junction lateral double diffused MOSFET (LDMOST) structure is designed with n-type charge compensation layer embedded in the p^--substrate near the drain to suppress substrate-assisted depletion effect that results from the compensating charges imbalance between the pillars in the n-type buried layer. A high electric field peak is introduced in the surface by the pn junction between the p^--substrate and n-type buried layer, which given rise to a more uniform surface electric field distribution by modulation effect. The effect of reduced bulk field (REBULF) is introduced to improve the vertical breakdown voltage by reducing the high bulk electric field around the drain, The new structure features high breakdown voltage, low on-resistance and charges balance in the drift region due to n-type buried layer.