Aqueous dispersion and stability of Fe304 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe304 super-paramagnetic ...Aqueous dispersion and stability of Fe304 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe304 super-paramagnetic nanoparticles which were modified by three kinds of materials [DSPE-MPEG2000, TiO2 and poly acrylic acid (PAA)] and further detected their characteristics. Trans- mission electron microscopy (TEM) clearly showed sizes and morphology of the four kinds of nanopar- ticles. X-ray diffraction (XRD) proved successfully coating of the three kinds of nanoparticles and their structures were maintained. Vibrating sample magnetometer (VSM) verified that their magnetic proper- ties fitted for the super-paramagnetic function. More importantly, the particle size analysis indicated that Fe304@PAA had a better size distribution, biocompatibility, stability and dispersion than the other two kinds of nanoparticles. In addition, using CNE2 cells as a model, we found that all nanoparticles were nontoxic. Taken together, our data suggest that Fe304@PAA nanoaparticles are superior in the applica- tion of biomedical field among the four kinds ofFe304 nanoparticles in the future.展开更多
目的制备超顺磁性硫酸链霉素-聚乳酸-聚乙二醇(PELA)微球(superparamagnetic chitosan streptomycin PELA micro-spheres,spCSPM),研究此微球的特性,并对其在振荡磁场作用下体外药物释放规律进行研究。方法用化学共沉淀法合成纳米超顺磁...目的制备超顺磁性硫酸链霉素-聚乳酸-聚乙二醇(PELA)微球(superparamagnetic chitosan streptomycin PELA micro-spheres,spCSPM),研究此微球的特性,并对其在振荡磁场作用下体外药物释放规律进行研究。方法用化学共沉淀法合成纳米超顺磁Fe304壳聚糖纳米粒(superparamagnetic chitosan Fe3O4 nanospheres,spFCN),再用双乳化(W/O/W)溶剂蒸发法制备spCSPM。将spCSPM混合入兔血中形成血凝块,在37℃模拟体液中进行体外药物溶出试验,用振荡磁场干预,用酶联免疫法(ELISA)检测硫酸链霉素的释放量。结果振荡磁场能够增加spCSPM血凝块中链霉素释放速率,与非磁性的壳聚糖聚乳酸-聚乙二醇(PELA)微球(chitosan streptomycin PELA microspheres,CSPM)相比,26d时使药物释放量提高3倍左右。结论spCSPM具有药物缓释功能,振荡磁场可重复性增加体系中药物的溶出,此体系药物缓释周期超过三周。展开更多
AIM:To evaluate tracking of magnetically labeled mesenchymal stem cells(MSCs) after intraportal transplantation.METHODS:Mononuclear cells were isolated from bone marrow aspirates of pigs by density gradient centrifuga...AIM:To evaluate tracking of magnetically labeled mesenchymal stem cells(MSCs) after intraportal transplantation.METHODS:Mononuclear cells were isolated from bone marrow aspirates of pigs by density gradient centrifugation,cultured and expanded,after which,they were incubated with super paramagnetic iron oxide(SPIO).Prussian blue staining was performed to highlight intracellular iron.To establish swine models of acute liver injury,0.5 g/kg D-galactosamine was administrated to 10 pigs,six of which were injected via their portal veins with SPIO-labeled MSCs,while the remaining four were injected with unlabeled cells.Magnetic resonance imaging(MRI) was performed with a clinical 1.5T MR scanner immediately before transplantation and 6 h,3 d,7 d and 14 d after transplantation.Prussian blue staining was again performed with the tissue slices at the endpoint.RESULTS:Prussian blue staining of SPIO-labeled MSCs had a labeling efficiency of almost 100%.Signal intensity loss in the liver by SPIO labeling on the FFE(T2*WI) sequence persisted until 14 d after transplantation.Histological analysis by Prussian blue staining confirmed homing of labeled MSCs in the liver after 14 d;primarily distributed in hepatic sinusoids and liver parenchyma.CONCLUSION:MSCs were successfully labeled with SPIO in vitro.MRI can monitor magnetically labeled MSCs transplanted into the liver.展开更多
Accurate nodal staging at the time of diagnosis of prostate cancer is crucial in determining a treatment plan for the patient. Pelvic lymph node dissection is the most reliable method, but is less than perfect and has...Accurate nodal staging at the time of diagnosis of prostate cancer is crucial in determining a treatment plan for the patient. Pelvic lymph node dissection is the most reliable method, but is less than perfect and has increased morbidity. Cross sectional imaging with computed tomography (CT) and magnetic resonance imaging (MRI) are non-invasive tools that rely on morphologic characteristics such as shape and size of the lymph nodes. However, lymph nodes harboring metastatic disease may be normal sized and non-metastatic lymph nodes may be enlarged due to reactive hyperplasia. The optimal strategy for preoperative staging remains a topic of ongoing research. Advanced imaging techniques to assess lymph nodes in the setting of prostate cancer utilizing novel MRI contrast agents as well as positron emission tomography (PET) tracers have been developed and continue to be studied. Magnetic resonance lymphography utilizing ultra-small super paramagnetic iron oxide has shown promising results in detection of metastatic lymph nodes. Combining MRL with diffusion-weighted imaging may also improve accuracy. Considerable efforts are being made to develop effective PET radiotracers that are performed using hybrid-imaging systems that combine PET with CT or MRI. PET tracers that will be reviewed in this article include [<sup>18</sup>F]fluoro-D-glucose, sodium [<sup>18</sup>F]fluoride, [<sup>18</sup>F]choline, [<sup>11</sup>C]choline, prostate specific membrane antigen binding ligands, [<sup>11</sup>C]acetate, [<sup>18</sup>F]fluciclovine, gastrin releasing peptide receptor ligands, and androgen binding receptors. This article will review these advanced imaging modalities and ability to detect prostate cancer metastasis to lymph nodes. While more research is needed, these novel techniques to image lymph nodes in the setting of prostate cancer show a promising future in improving initial lymph node staging.展开更多
基金supported by the National Natural Science Foundation of China(No.81172121)
文摘Aqueous dispersion and stability of Fe304 nanoparticles remain an issue unresolved since aggregation of naked iron nanoparticles in water. In this study, we successfully synthesized different Fe304 super-paramagnetic nanoparticles which were modified by three kinds of materials [DSPE-MPEG2000, TiO2 and poly acrylic acid (PAA)] and further detected their characteristics. Trans- mission electron microscopy (TEM) clearly showed sizes and morphology of the four kinds of nanopar- ticles. X-ray diffraction (XRD) proved successfully coating of the three kinds of nanoparticles and their structures were maintained. Vibrating sample magnetometer (VSM) verified that their magnetic proper- ties fitted for the super-paramagnetic function. More importantly, the particle size analysis indicated that Fe304@PAA had a better size distribution, biocompatibility, stability and dispersion than the other two kinds of nanoparticles. In addition, using CNE2 cells as a model, we found that all nanoparticles were nontoxic. Taken together, our data suggest that Fe304@PAA nanoaparticles are superior in the applica- tion of biomedical field among the four kinds ofFe304 nanoparticles in the future.
基金Supported by (partly) the Natural Science Foundation of Jiangsu Province, No BK2007537key program of Nanjing Municipal Bureau of Public Health, No ZKX06015
文摘AIM:To evaluate tracking of magnetically labeled mesenchymal stem cells(MSCs) after intraportal transplantation.METHODS:Mononuclear cells were isolated from bone marrow aspirates of pigs by density gradient centrifugation,cultured and expanded,after which,they were incubated with super paramagnetic iron oxide(SPIO).Prussian blue staining was performed to highlight intracellular iron.To establish swine models of acute liver injury,0.5 g/kg D-galactosamine was administrated to 10 pigs,six of which were injected via their portal veins with SPIO-labeled MSCs,while the remaining four were injected with unlabeled cells.Magnetic resonance imaging(MRI) was performed with a clinical 1.5T MR scanner immediately before transplantation and 6 h,3 d,7 d and 14 d after transplantation.Prussian blue staining was again performed with the tissue slices at the endpoint.RESULTS:Prussian blue staining of SPIO-labeled MSCs had a labeling efficiency of almost 100%.Signal intensity loss in the liver by SPIO labeling on the FFE(T2*WI) sequence persisted until 14 d after transplantation.Histological analysis by Prussian blue staining confirmed homing of labeled MSCs in the liver after 14 d;primarily distributed in hepatic sinusoids and liver parenchyma.CONCLUSION:MSCs were successfully labeled with SPIO in vitro.MRI can monitor magnetically labeled MSCs transplanted into the liver.
基金Supported by Eli Lilly/AvidAbb Vie,consulting for GE Healthcare,Siemens Healthcare and Blue Earth Diagnostics
文摘Accurate nodal staging at the time of diagnosis of prostate cancer is crucial in determining a treatment plan for the patient. Pelvic lymph node dissection is the most reliable method, but is less than perfect and has increased morbidity. Cross sectional imaging with computed tomography (CT) and magnetic resonance imaging (MRI) are non-invasive tools that rely on morphologic characteristics such as shape and size of the lymph nodes. However, lymph nodes harboring metastatic disease may be normal sized and non-metastatic lymph nodes may be enlarged due to reactive hyperplasia. The optimal strategy for preoperative staging remains a topic of ongoing research. Advanced imaging techniques to assess lymph nodes in the setting of prostate cancer utilizing novel MRI contrast agents as well as positron emission tomography (PET) tracers have been developed and continue to be studied. Magnetic resonance lymphography utilizing ultra-small super paramagnetic iron oxide has shown promising results in detection of metastatic lymph nodes. Combining MRL with diffusion-weighted imaging may also improve accuracy. Considerable efforts are being made to develop effective PET radiotracers that are performed using hybrid-imaging systems that combine PET with CT or MRI. PET tracers that will be reviewed in this article include [<sup>18</sup>F]fluoro-D-glucose, sodium [<sup>18</sup>F]fluoride, [<sup>18</sup>F]choline, [<sup>11</sup>C]choline, prostate specific membrane antigen binding ligands, [<sup>11</sup>C]acetate, [<sup>18</sup>F]fluciclovine, gastrin releasing peptide receptor ligands, and androgen binding receptors. This article will review these advanced imaging modalities and ability to detect prostate cancer metastasis to lymph nodes. While more research is needed, these novel techniques to image lymph nodes in the setting of prostate cancer show a promising future in improving initial lymph node staging.