期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Super smoother和3σ原理的列车动态测试趋势性异常数据清洗方法与分析 被引量:6
1
作者 左建勇 冯富人 丁景贤 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第10期65-73,共9页
列车动态测试存在数据采集环境干扰大,重复成本高等问题,需要尽可能的从存在异常的数据中保留更多的有效信息。本文针对其中存在的长周期,低频率的趋势性异常数据清洗问题,首先介绍了一种基于Super smoother和3σ原理的数据清洗方法。... 列车动态测试存在数据采集环境干扰大,重复成本高等问题,需要尽可能的从存在异常的数据中保留更多的有效信息。本文针对其中存在的长周期,低频率的趋势性异常数据清洗问题,首先介绍了一种基于Super smoother和3σ原理的数据清洗方法。然后通过与其他常用异常数据清洗方法如神经网络,小波变换等的对比,分别从降噪处理,数据漂移处理,缺失数据补充处理和短暂快速异常波动处理四个方面对方法的数据清洗能力进行了分析和验证,结果表明清洗后数据的Pearson系数由0.785上升到0.923,方法在快速清洗和数据修补方面具有较大优势。最后以某城轨列车制动温升试验数据为例,对实际线路测试数据进行了数据清洗处理,结果表明方法能够较好的解决列车动态测试中存在的趋势性异常数据清洗问题。 展开更多
关键词 列车动态测试 趋势性异常数据 数据清洗 super smoother方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部