期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
The temperature-dependent fracture strength model for ultra-high temperature ceramics 被引量:14
1
作者 Weiguo Li Fan Yang Daining Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期235-239,共5页
Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of e... Breaking down the entire structure of a material implies severing all the bonds between its atoms either by applying work or by heat transfer. Because bond-breaking is indifferent to either means, there is a kind of equivalence between heat energy and strain energy. Based on this equivalence, we assume the existence of a constant maximum storage of energy that includes both the strain energy and the corresponding equivalent heat energy. A temperaturedependent fracture strength model is then developed for ultrahigh temperature ceramics (UHTCs). Model predictions for UHTCs, HfB2, TiC and ZrB2, are presented and compared with the experimental results. These predictions are found to be largely consistent with experimental results. 展开更多
关键词 ultra-high temperature ceramics · Equivalent energy · Critical failure energy · Strength model
下载PDF
Fabrication and Thermal Structural Characteristics of Ultra-high Temperature Ceramic Struts in Scramjets 被引量:2
2
作者 解维华 PENG Zujun +2 位作者 金华 孟松鹤 PAN Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期375-380,共6页
ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinabil... ZrB_2-SiC based ultra-high temperature ceramic(UHTC) struts were firstly proposed and fabricated with the potential application in the combustor of scramjets for fuel injection and flame-holding for their machinability and excellent oxidation/ablation resistance in the extreme harsh environment. The struts were machined with electrospark wire-electrode cutting techniques to form UHTC into the desired shape, and with laser drilling to drill tiny holes providing the channels for fuel injection. The integrated thermal-structural characteristic of the struts was evaluated in high-temperature combustion environment by the propane-oxygen free jet facility, subject to the heat flux of 1.5 MW/m^2 lasting for 300 seconds, and the struts maintained integrity during and after the first experiment. The experiments were repeated for verifying the reusability of the struts. Fracture occurred during the second repeated experiment with the crack propagating through the hole. Finite element analysis(FEA) was carried out to study the thermal stress distribution in the UHTC strut. The simulation results show a high thermal stress concentration occurs at the hole which is the crack initiation position. The phenomenon is in good agreement with the experimental results. The study shows that the thermal stress concentration is a practical key issue in the applications of the reusable UHTC strut for fuel injection structure in scramjets. 展开更多
关键词 ultra-high temperature ceramic(UHTC) strut thermal stress fracture scramjet
下载PDF
Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics
3
作者 Tianbao CHENG Weiguo LI +2 位作者 Yushan SHI Wei LU Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期201-210,共10页
The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TS... The effects of mechanical boundary conditions, often encountered in thermalstructural engineering, on the thermal shock resistance(TSR) of ultra-high temperature ceramics(UHTCs) are studied by investigating the TSR of a UHTC plate with various types of constraints under the first, second, and third type of thermal boundary conditions. The TSR of UHTCs is strongly dependent on the heat transfer modes and severity of the thermal environments. Constraining the displacement of the lower surface in the thickness direction can significantly decrease the TSR of the UHTC plate, which is subject to the thermal shock at the upper surface. In contrast, the TSR of the UHTC plate with simply supported edges or clamped edges around the lower surface is much better. 展开更多
关键词 thermal shock resistance(TSR) ultra-high temperature ceramic(UHTC) mechanical boundary condition temperature-dependent material property thermal environment
下载PDF
Porous Ultra-high Temperature Ceramics for Ultra-high Temperature Thermal Protection System
4
作者 LI Fei LIU Jixuan ZHANG Guojun 《China's Refractories》 CAS 2020年第4期23-28,共6页
Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical s... Ultra-high temperature ceramics(UHTCs)are a family of borides,carbides and nitrides of transition elements such as hafnium,zirconium,tantalum and niobium.They exhibit the highest known melting points,good mechanical strength,good chemical and thermal stability under certain conditions.In last decade,researchers dedicated to characterize porous UHTCs aiming to develop novel thermal insulating materials that could withstand temperatures over 2000℃.In this article,the preparation and characteristics of porous UHTCs were reviewed.Dry processing,colloidal processing and solution processing routes have been used to prepare porous UHTCs with porosities ranging from 5%to 97%and pore sizes ranging from hundreds of nanometers to hundreds of micrometers.The obtained porous UHTCs are chemically and dimensionally stable at temperatures up to 2000℃ during static state high-temperature thermal aging. 展开更多
关键词 ultra-high temperature ceramics porous ceramics thermal protection system extreme environments
下载PDF
Microstructure and Oxidation Behavior of ZrB_(2)-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration
5
作者 TAN Min CHEN Xiaowu +5 位作者 YANG Jinshan ZHANG Xiangyu KAN Yanmei ZHOU Haijun XUE Yudong DONG Shaoming 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第8期955-964,共10页
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to... ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics. 展开更多
关键词 ultra-high temperature ceramic ZRB2-SIC oxidation behavior reactive melt infiltration
下载PDF
High speed laser cladding as a new approach to prepare ultra-high temperature ceramic coatings
6
作者 Qiyao Deng Pengfei He +8 位作者 Chuan Sun Yang Li Yue Xing Yujie Wang Jinglong Li Xiubing Liang Xin Wang Yujie Zhou Yujun Cai 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第2期143-154,共12页
Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed l... Ultra-high temperature ceramic(UHTC)coatings are used to protect the hot-end components of hypervelocity aerocrafts from thermal ablation.This study provides a new approach to fabricate UHTC coatings with high speed laser cladding(HSLC)technology,and places more emphasis on investigating the formation mechanism,phase compositions,and mechanical properties of HSLC-UHTC coatings.Results show that a well-bonded interface between the coating and the tantalum alloy substrate can be formed.The coating is mainly composed of(Zr,Ta)C ceramic solid solution phase with a content of higher than 90% by volume and Ta(W)metal solid solution phase.At a relatively high powder feeding rate,the ZrC ceramic phase appears in the coating while a dense ZrC UHTC top layer with a thickness of up to~50μm is successfully fabricated.As for the mechanical properties of the HSLC coatings,the fracture toughness of the coating decreases with the increase of powder feeding rate.The increase of carbide solid solution phase can significantly improve the high temperature microhardness(552.7±1.8 HV0.5@1000℃).The innovative design of HSLC ZrC-based coatings on refractory alloys accomplishes continuous transitions on microstructure and properties from the substrate to the UHTC top layer,which is a very promising candidate scheme for thermal protection coating. 展开更多
关键词 high speed laser cladding(HSLC) ultra-high temperature ceramic(UHTC) thermal protection coating microstructure mechanical properties
原文传递
Advances in ultra-high temperature ceramics,composites,and coatings 被引量:37
7
作者 Dewei NI Yuan CHENG +10 位作者 Jiaping ZHANG Ji-Xuan LIU Ji ZOU Bowen CHEN Haoyang WU Hejun LI Shaoming DONG Jiecai HAN Xinghong ZHANG Qiangang FU Guo-Jun ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第1期1-56,共56页
Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ul... Ultra-high temperature ceramics(UHTCs)are generally referred to the carbides,nitrides,and borides of the transition metals,with the Group IVB compounds(Zr&Hf)and TaC as the main focus.The UHTCs are endowed with ultra-high melting points,excellent mechanical properties,and ablation resistance at elevated temperatures.These unique combinations of properties make them promising materials for extremely environmental structural applications in rocket and hypersonic vehicles,particularly nozzles,leading edges,and engine components,etc.In addition to bulk UHTCs,UHTC coatings and fiber reinforced UHTC composites are extensively developed and applied to avoid the intrinsic brittleness and poor thermal shock resistance of bulk ceramics.Recently,high-entropy UHTCs are developed rapidly and attract a lot of attention as an emerging direction for ultra-high temperature materials.This review presents the state of the art of processing approaches,microstructure design and properties of UHTCs from bulk materials to composites and coatings,as well as the future directions. 展开更多
关键词 ultra-high temperature ceramics(UHTCs) COATINGS COMPOSITES high-entropy ultra-high temperature ceramics
原文传递
Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review 被引量:62
8
作者 Sufang Tang Chenglong Hu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第2期117-130,共14页
Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overc... Carbon fiber reinforced ultra-high temperature ceramic (UHTC) composites, consisting of carbon fibers embedded in a UHTC-matrix or a C-SiC-UHTC-matrix, are deemed as the most viable class of materials that can overcome the poor fracture toughness and thermal shock resistance of monolithic UHTC ma- terials, and also improve the oxidation resistance and ablation resistance of C/C and C/SiC composites at ultra-high temperatures. In this review, we summarize the different processing routes of the compos- ites based on the UHTC introducing methods, including chemical vapor infiltration/deposition (CVI/D), precursor infiltration and pyrolysis (PIP), reactive melt infiltration (RMI), slurry infiltration (SI). in-sito reaction, hot pressing (HP), etc; and the advantages and drawbacks of each method are briefly dis- cussed. The carbon fiber reinforced UHTC composites can be highly tailorable materials in terms of fiber. interface, and matrix. From the perspective of service environmental applications for engine propul- sions anti hypersonic vehicles, the material designs (mainly focusing on the composition, quantity, structure of matrix, as well as the architecture of carbon fibers, UHTCs and pores), their relevant processing routes and properties (emphasizing on the mechanical and ablation properties) are discussed in this paper. In addition, we propose a material architecture to realize the multi-function through changing the distri- bution of carbon fibers, UHTCs and pores, which will be an important issue for future development of carbon fiber reinforced UHTC composites. 展开更多
关键词 Carbon fiber composites ceramic matrix composites (CMC) ultra-high temperature ceramic (UHTC) Ablation
原文传递
Sol–gel derived porous ultra-high temperature ceramics 被引量:9
9
作者 Fei LI Xiao HUANG +1 位作者 Ji-Xuan LIU Guo-Jun ZHANG 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第1期1-16,共16页
Ultra-high temperature ceramics(UHTCs)are considered as a family of nonmetallic and inorganic materials that have melting point over 3000℃.Chemically,nearly all UHTCs are borides,carbides,and nitrides of early transi... Ultra-high temperature ceramics(UHTCs)are considered as a family of nonmetallic and inorganic materials that have melting point over 3000℃.Chemically,nearly all UHTCs are borides,carbides,and nitrides of early transition metals(e.g.,Zr,Hf,Nb,Ta).Within the last two decades,except for the great achievements in the densification,microstructure tailoring,and mechanical property improvements of UHTCs,many methods have been established for the preparation of porous UHTCs,aiming to develop high-temperature resistant,sintering resistant,and lightweight materials that will withstand temperatures as high as 2000℃for long periods of time.Amongst the synthesis methods for porous UHTCs,sol–gel methods enable the preparation of porous UHTCs with pore sizes from 1 to 500μm and porosity within the range of 60%–95%at relatively low temperature.In this article,we review the currently available sol–gel methods for the preparation of porous UHTCs.Templating,foaming,and solvent evaporation methods are described and compared in terms of processing–microstructure relations.The properties and high temperature resistance of sol–gel derived porous UHTCs are discussed.Finally,directions to future investigations on the processing and applications of porous UHTCs are proposed. 展开更多
关键词 sol–gel ultra-high temperature ceramics porous ceramics PROCESSING MICROSTRUCTURE
原文传递
Elucidating the role of preferential oxidation during ablation:Insights on the design and optimization of multicomponent ultra-high temperature ceramics 被引量:8
10
作者 Ziming YE Yi ZENG +2 位作者 Xiang XIONG Qingbo WEN Huilin LUN 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第12期1956-1975,共20页
Multicomponent ultra-high temperature ceramics(UHTCs)are promising candidates for thermal protection materials(TPMs)used in aerospace field.However,finding out desirable compositions from an enormous number of possibl... Multicomponent ultra-high temperature ceramics(UHTCs)are promising candidates for thermal protection materials(TPMs)used in aerospace field.However,finding out desirable compositions from an enormous number of possible compositions remains challenging.Here,through elucidating the role of preferential oxidation in ablation behavior of multicomponent UHTCs via the thermodynamic analysis and experimental verification,the correlation between the composition and ablation performance of multicomponent UHTCs was revealed from the aspect of thermodynamics.We found that the metal components in UHTCs can be thermodynamically divided into preferentially oxidized component(denoted as MP),which builds up a skeleton in oxide layer,and laggingly oxidized component(denoted as ML),which fills the oxide skeleton.Meanwhile,a thermodynamically driven gradient in the concentration of MP and ML forms in the oxide layer.Based on these findings,a strategy for pre-evaluating the ablation performance of multicomponent UHTCs was developed,which provides a preliminary basis for the composition design of multicomponent UHTCs. 展开更多
关键词 multicomponent ceramics ultra-high temperature ceramics(UHTCs) preferential oxidation oxidation behavior ablation resistance
原文传递
An experimental study of ultra-high temperature ceramics under tension subject to an environment with elevated temperature,mechanical stress and oxygen
11
作者 HAN XinXing XU ChengHai +2 位作者 JIN Hua XIE WeiHua MENG SongHe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第8期1349-1356,共8页
Ultra-high temperature ceramic(UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal,... Ultra-high temperature ceramic(UHTC) composites are widely used in high-temperature environments in aerospace applications. They experience extremely complex environmental conditions during service, including thermal, mechanical and chemical loading. Therefore, it is critical to evaluate the mechanical properties of UHTCs subject to an environment with elevated temperature, mechanical stress and oxygen. In this paper, an experimental investigation of the uniaxial tensile properties of a ZrB_2-SiC-graphite subject to an environment with a simultaneously elevated temperature, mechanical stress and oxygen is conducted based on a high-temperature mechanical testing system. To improve efficiency, an orthogonal experimental design is used. It is suggested that the temperature has the most important effect on the properties, and the oxidation time and stress have an almost equal effect. Finally, the fracture morphology is characterized using scanning electron microscopy(SEM), and the mechanism is investigated. It was concluded that the main fracture mode involved graphite flakes pulling out of the matrix and crystalline fracture, which indicates the presence of a weak interface in the composites. 展开更多
关键词 ultra-high temperature ceramics ENVIRONMENT with elevated temperature mechanical stress and OXYGEN UNIAXIAL tensile strength orthogonal experimental design
原文传递
Design and preparation of an ultra-high temperature ceramic by in-situ introduction of Zr_(2)[Al(Si)]_(4)C_(5) into ZrB_(2)-SiC:Investigation on the mechanical properties and oxidation behavior
12
作者 Lei YU Hui LIU +6 位作者 Yaohui FU Weijiang HU Zhefei WANG Quan LIU Bo WEI Jian YANG Tai QIU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第5期1082-1094,共13页
Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical propert... Novel ZrB_(2)-matrix composites were designed and prepared by in-situ introducing SiC and Zr_(2)[Al(Si)]_(4)C_(5) simultaneously for the first time.The obtained composites were dense and showed good mechanical properties,especially the strength and toughness,706 MPa and 7.33 MPa·m^(1/2),respectively,coupled with high hardness of 21.3 GPa,and stiffness of 452 GPa.SiC and Zr_(2)[Al(Si)]_(4)C_(5) constituted a reinforcing system with synergistic effects including grain refinement,grain pull-out as well as crack branching,bridging,and deflection.Besides,the oxidation results of the composites showed that the oxidation kinetics followed the parabolic law at 1600℃,and the oxidation rate constants increased with the increase of Zr_(2)[Al(Si)]_(4)C_(5) content.The formation and evolution model of the oxidation structure was also investigated,and the oxide scale of the composite exhibited a three-layer structure. 展开更多
关键词 ZrB_(2)-matrix composites ultra-high temperature ceramics(UHTCs) mechanical properties strengthening and toughening mechanism oxidation behavior
原文传递
Ablation behaviour of(Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100℃ 被引量:6
13
作者 Yichen Wang Buhao Zhang +2 位作者 Chengyu Zhang Jie Yin Michael J.Reece 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第18期40-47,共8页
The ablation behaviour of(Hf-Ta-Zr-Nb)C high entropy carbide(HEC4)was studied at temperatures above 2100℃using a plasma flame gun in air.The microstructures,phase and chemical compositions of the HEC4 samples were in... The ablation behaviour of(Hf-Ta-Zr-Nb)C high entropy carbide(HEC4)was studied at temperatures above 2100℃using a plasma flame gun in air.The microstructures,phase and chemical compositions of the HEC4 samples were investigated after ablation.The mass ablation rate of the HEC4 samples increased with increasing ablation time from 0.21 mg cm^(−2)s^(−1)for 60 s to 0.45 mg cm^(−2)s^(−1)for 120 s.Com-pared to the mono-and binary carbides with commonly decreased mass and thickness after ablation,the HEC4 samples with the increased mass and thickness after ablation showed good resistance to mechan-ical scouring at such high temperatures and an oxidation controlled ablation mechanism.The ablation processes mainly include the oxidation of the carbide,the phase separation of the oxides,the melting of oxides,and the diffusion of oxygen.A composition gradient in the oxide layer was detected due to the different melting temperatures of the different oxides;Nb-Ta rich oxides formed at the front surface melted and became enriched at the edge of the samples,and the Zr-Hf rich oxides were enriched in the centre of the samples.The oxide layer with complex compositions and phase distributions acted as an effective ablation barrier. 展开更多
关键词 High entropy carbides Transition metal carbides ultra-high temperature ceramics Ablation resistance
原文传递
Anisotropic thermal expansion in high-entropy multicomponent AlB_(2)-type diboride solid solutions
14
作者 Frédéric Monteverde Mattia Gaboardi +3 位作者 Federico Saraga Lun Feng William Fahrenholtz Gregory Hilmas 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期331-343,共13页
High-entropy(HE)ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding.Among oth... High-entropy(HE)ultra-high temperature ceramics have the chance to pave the way for future applications propelling technology advantages in the fields of energy conversion and extreme environmental shielding.Among others,HE diborides stand out owing to their intrinsic anisotropic layered structure and ability to withstand ultra-high temperatures.Herein,we employed in-situ high-resolution synchrotron diffraction over a plethora of multicomponent compositions,with four to seven transition metals,with the intent of understanding the thermal lattice expansion following different composition or synthesis process.As a result,we were able to control the average thermal expansion(TE)from 1.3×10^(−6)to 6.9×10^(−6)K^(−1)depending on the combination of metals,with a variation of in-plane to out-of-plane TE ratio ranging from 1.5 to 2.8. 展开更多
关键词 ultra-high temperature ceramics borides high-entropy ceramics spark plasma sintering synchrotron diffraction anisotropic thermal expansion
下载PDF
Influence of equiatomic Zr/(Ti,Nb)substitution on microstructure and ultra-high strength of(Ti,Zr,Nb)C medium-entropy ceramics at 1900℃ 被引量:1
15
作者 Qingqing YANG Xingang WANG +6 位作者 Weichao BAO Ping WU Xiaofei WANG Xiaojie GUO Cheng ZHANG Guojun ZHANG Danyu JIANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第9期1457-1465,共9页
High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,w... High-temperature mechanical properties of medium-entropy carbide ceramics have attracted significant attention.Tailoring the microstructure is an effective way to improve these high-temperature mechanical properties,which can be affected by the evolution of the enthalpy and entropy,as well as by lattice distortion and sluggish diffusion.In this study,the effects of equiatomic Zr/(Ti,Nb)substitution(Zr content of 10-40 at%)on the microstructure and high-temperature strength of(Ti,Zr,Nb)C medium-entropy ceramics were investigated.The grain size of the(Ti,Zr,Nb)C medium-entropy ceramics was refined from 9.4±3.7 to 1.1±0.4μm with an increase in the Zr content from 10.0 to 33.3 at%.A further increase in the Zr content to 40 at%resulted in a slight increase in the grain size.At 1900℃,the(Ti,Zr,Nb)C medium-entropy ceramics with the Zr contents of 33.3 and 40 at%exhibited ultra-high flexural strengths of 875±43 and 843±71 MPa,respectively,which were higher than those of the transition metal carbides previously reported under similar conditions.Furthermore,relatively smooth grain boundaries,which were detected at a test temperature of 1000℃,transformed into curved and serrated boundaries as the temperature increased to 1900℃,which may be considered the primary reason for the improved high-temperature flexural strength.The associated mechanism was analyzed and discussed in detail. 展开更多
关键词 medium entropy mechanical property ultra-high temperature ceramics(UHTCs) nonequimolar compositions curved and serrated grain boundaries
原文传递
PTCR陶瓷材料的超低温烧结 被引量:8
16
作者 唐小锋 陈海龙 周志刚 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2000年第4期697-703,共7页
主要研究了BN对PTCR陶瓷材料低温烧结的作用.对La掺杂BaTiO_3PTCR陶瓷,在1100℃的低温下烧结可以得到室温电阻率为150 ·cm、升阻比为4.9个数量级的样品.对居里温度为360℃的高居里点(Ba_... 主要研究了BN对PTCR陶瓷材料低温烧结的作用.对La掺杂BaTiO_3PTCR陶瓷,在1100℃的低温下烧结可以得到室温电阻率为150 ·cm、升阻比为4.9个数量级的样品.对居里温度为360℃的高居里点(Ba_(0.4)Pb_(0.6))TiO_3 PTCR陶瓷材料,选用 Nb_2O_5为半导化剂,BN和AST为助烧剂时,可以在1000℃左右的超低温下烧成.同时,对BN助烧剂的液相烧结机制进行了初步的探讨. 展开更多
关键词 BN PTCR 陶瓷 超低温烧结 半导体陶瓷 助剂
下载PDF
两面顶技术低温超高压烧结AlN陶瓷的研究 被引量:2
17
作者 李丹 卢忠远 范辉 《新技术新工艺》 北大核心 2004年第8期44-46,共3页
研究了掺杂不同质量分数的Y2 O3的AlN陶瓷在超高压状态下烧结的第二相组成和微观结构。研究表明 ,Y2 O3是有效的低温烧结助剂 ,在低温超高压烧结下 ,掺杂不同比例烧结助剂的AlN陶瓷的第二相均为Al5Y3O12 ,在 4 .4× 10 3MPa ,15 0 0... 研究了掺杂不同质量分数的Y2 O3的AlN陶瓷在超高压状态下烧结的第二相组成和微观结构。研究表明 ,Y2 O3是有效的低温烧结助剂 ,在低温超高压烧结下 ,掺杂不同比例烧结助剂的AlN陶瓷的第二相均为Al5Y3O12 ,在 4 .4× 10 3MPa ,15 0 0℃ ,1h的实验条件下 ,超高压烧结AlN陶瓷有着较好的微观结构 ,热导率可达到 130W /(m·K)。 展开更多
关键词 Y2O3 陶瓷 烧结助剂 研究 微观结构 质量分数 相组成 第二相 超高压 掺杂
下载PDF
Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach 被引量:21
18
作者 Junfeng Gu Ji Zou +4 位作者 Shi-Kuan Sun Hao Wang Su-Yang Yu Jinyong Zhang Weimin Wangand Zhengyi Fu 《Science China Materials》 SCIE EI CSCD 2019年第12期1898-1909,共12页
Equimolar quinary diboride powders,with nominal composition of(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2,were synthesized by boro/carbothermal reduction(BCTR)of oxide mixtures(MOx,M=Ti,Hf,Zr,Nb and Ta)using B4 C as source of B... Equimolar quinary diboride powders,with nominal composition of(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2,were synthesized by boro/carbothermal reduction(BCTR)of oxide mixtures(MOx,M=Ti,Hf,Zr,Nb and Ta)using B4 C as source of B and C in vacuum.By adjusting the B4 C/MOxratios,diboride mixtures without detectable MOxwere obtained at 1600℃,while high-entropy diboride(HEB)powders with particle size of<1μm was obtained at 1800℃.The phase,morphology and solid solution evolution process of the HEB powders during the BCTR process were comprehensively investigated.Although X-ray diffraction pattern indicated the powders synthesized at 1800℃ were in a single-phase Al B2 structure,elemental mappings showed that(Ta,Ti)-rich and(Zr,Nb)-rich solid solution coexisted in the HEB powders.The distribution of niobium and zirconium atoms in HEB was unable to reach uniform until the HEB powders were spark plasma sintered at 2000°C.(Ti0.2 Hf0.2 Zr0.2 Nb0.2 Ta0.2)B2 ceramics with a relative density of 97.9%were obtained after spark plasma sintering the HEB powders at 2050℃ under 50 MPa.Rapid grain growth was found in this composition when the sintering temperature was increased from 2000 to 2050℃,and the averaged grain size increased from 6.67 to 41.2μm.HEB ceramics sintered at 2000℃ had a Vickers hardness of 22.44±0.56 GPa(under a load of 1 kg),a Young’s modulus of^500 GPa and a fracture toughness of 2.83±0.15 MPa m1/2.This is the first report for obtaining high density HEB ceramics without residual oxide phase,benefiting from the high quality HEB powders obtained. 展开更多
关键词 ultra-high temperature ceramics high-entropy borides solid solution rapid grain growth powder synthesis
原文传递
Ce and W co-doped CaBi_(2)Nb_(2)O_(9) with enhanced piezoelectric constant and electrical resistivity at high temperature 被引量:8
19
作者 Zong-Yang Shen Chen Qin +4 位作者 Wen-Qin Luo Fusheng Song Zhumei Wang Yueming Li Shujun Zhang 《Journal of Materiomics》 SCIE EI 2020年第3期459-466,共8页
Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect... Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect of W addition on the structure,electrical resistivity,dielectric and piezoelectric properties.A piezoelectric constant d33 of 13.4 pC/N is obtained in CCBN-W2 ceramics,>100% higher than that of pure CaBi_(2)Nb_(2)O_(9)(d_(33)=5.8e6.4 pC/N).Of particular significance is that the electrical resistivity of CCBN-W2 ceramics(r=3.7×109 U cm at 500℃)is three orders of magnitude higher than pure CaBi_(2)Nb_(2)O_(9)(r=2.9×10^(6) U cm at same temperature).All these properties,together with its low dielectric loss(tandδ0.13%)and excellent d33 thermal stability up to 800℃,merit the CCBN-W2 ceramics for high temperature piezoelectric sensing applications. 展开更多
关键词 ultra-high temperature ceramics Piezoelectric properties Aurivillius phase Bismuth layered structure CaBi_(2)Nb_(2)O_(9)
原文传递
Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2 被引量:2
20
作者 Yu Wang Yue-dong Wu +3 位作者 Ke-han Wu Shu-qiang Jiao Kuo-chih Chou Guo-hua Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第7期831-838,共8页
ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compar... ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the “dissolution–recrystallization” mechanism. 展开更多
关键词 ZIRCONIUM DIBORIDE borothermal reduction ultra-high temperature ceramics dissolution-recrystallization mechanism
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部