The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method.Color-optical microscopy,scanning electron microscopy,energy spectrum analysis,impac...The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method.Color-optical microscopy,scanning electron microscopy,energy spectrum analysis,impact and corrosion testing were carried out to investigate characteristics of microstructure and properties of the SDSS aged at the nose temperature.The experimental results indicate that the nose temperature of precipitation is 920℃ and aging at this temperature tiny σ phases can precipitate at phase interfaces or ferrite grain boundaries within 2min.Prolonging aging duration the amount ofσ-phase increases and a dual structure with σ and γ is obtained when aging for 120min.The precipitation ofσ-phase leads to severe deterioration in impact toughness (longitudinal/transverse direction) and corrosion resistance of SDSS.展开更多
Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A...Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A8907 A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5 A and 6 A.This work is a comparative study of the mechanical properties,corrosion,and erosion-corrosion resistance of super-duplex grades 5 A and 6 A and the hyper-duplex grade 7 A.The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios.The hardness of the grade 7 A was nearly 15%higher than those of the super-duplex grades,which is attributed to the effect of the higher contents of W and Mn in 7 A.The impact toughness of grade 7 A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W.The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number(PREN)of grade7 A resulted in higher corrosion resistance.The harder and more passive grade 7 A showed a 35%lower material loss during erosion-corrosion.展开更多
Super duplex stainless steels(SDSS) show complex precipitation and transformation behavior during heat treatment processes,which affects both mechanical and corrosion properties. This report presents some data on the ...Super duplex stainless steels(SDSS) show complex precipitation and transformation behavior during heat treatment processes,which affects both mechanical and corrosion properties. This report presents some data on the microstructures that develop after folding and subsequent precipitation during heat treatment of UNS S32750 SDSS sheet samples.The microstructural and textural changes have been followed using SEM/EBSD techniques.Upon folding,both a texture and strain gradient form in the folded/bent region,subsequent heat treatment at 845℃results in the ferrite phase to transform to sigma,austenite and chi phases.Transformation was found to be accelerated by strain.Complete transformation of the ferrite phase occurred within half the annealing time required in the unstrained regions.The local mis-orientations in the ferrite and austenite phases reduced during annealing,however,the reduction in the austenite was not very high and a significant amount remained even after the longest annealing time.The texture components that developed during the folding process remained unchanged even after one hour annealing at 845℃.The implication of these findings could have a bearing on the formation of sigma phase during welding of SDSS that may have residual stresses introduced during final processing.展开更多
基金Founded by the Special Project of Shaanxi Education Department(07JK309)Xi'an University of Architecture and Technology (JC0714)
文摘The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method.Color-optical microscopy,scanning electron microscopy,energy spectrum analysis,impact and corrosion testing were carried out to investigate characteristics of microstructure and properties of the SDSS aged at the nose temperature.The experimental results indicate that the nose temperature of precipitation is 920℃ and aging at this temperature tiny σ phases can precipitate at phase interfaces or ferrite grain boundaries within 2min.Prolonging aging duration the amount ofσ-phase increases and a dual structure with σ and γ is obtained when aging for 120min.The precipitation ofσ-phase leads to severe deterioration in impact toughness (longitudinal/transverse direction) and corrosion resistance of SDSS.
文摘Duplex stainless steels(DSSs)used in subsea structures and desalination industries require high corrosion and erosion resistance as well as excellent mechanical properties.The newly introduced cast duplex grade ASTM A8907 A has a unique composition and is expected to have a much better resistance to corrosion and erosion compared with the super-duplex grades 5 A and 6 A.This work is a comparative study of the mechanical properties,corrosion,and erosion-corrosion resistance of super-duplex grades 5 A and 6 A and the hyper-duplex grade 7 A.The three DSSs exhibited equiaxial austenite islands in the ferrite matrix and balanced phase ratios.The hardness of the grade 7 A was nearly 15%higher than those of the super-duplex grades,which is attributed to the effect of the higher contents of W and Mn in 7 A.The impact toughness of grade 7 A was found to be lower than those of the super-duplex grades due to the carbide precipitation resulting from the partial substitution of Mo with W.The oxide layer strengthening effect of rare earth elements and the higher pitting resistance equivalent number(PREN)of grade7 A resulted in higher corrosion resistance.The harder and more passive grade 7 A showed a 35%lower material loss during erosion-corrosion.
文摘Super duplex stainless steels(SDSS) show complex precipitation and transformation behavior during heat treatment processes,which affects both mechanical and corrosion properties. This report presents some data on the microstructures that develop after folding and subsequent precipitation during heat treatment of UNS S32750 SDSS sheet samples.The microstructural and textural changes have been followed using SEM/EBSD techniques.Upon folding,both a texture and strain gradient form in the folded/bent region,subsequent heat treatment at 845℃results in the ferrite phase to transform to sigma,austenite and chi phases.Transformation was found to be accelerated by strain.Complete transformation of the ferrite phase occurred within half the annealing time required in the unstrained regions.The local mis-orientations in the ferrite and austenite phases reduced during annealing,however,the reduction in the austenite was not very high and a significant amount remained even after the longest annealing time.The texture components that developed during the folding process remained unchanged even after one hour annealing at 845℃.The implication of these findings could have a bearing on the formation of sigma phase during welding of SDSS that may have residual stresses introduced during final processing.