Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove ...Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove outer skin of the pod (exocarp) to expose the color of the middle layer (mesocarp). The mesocarp color changes with maturity from white to yellow, orange, brown and finally black. The sum of percentage from orange, brown, and black mesocarp (OBB) color and black color (BL) represents the kernels that are mature enough to harvest. The goal of this research is to identify methodologies to estimate OBB and BL of the pods using RGB images taken in the field and validate the proposed model using other pod images. The Mahalanobis distance classification method was used to process sets of images and calculate pod area (number of pixels) corresponding to two classes (mesocarp and background) with nine different color groups. The results showed a performance of 94% effectiveness for mesocarp using Mahalanobis distance classification. Statistical regression for OBB and BL was developed based on 315 images of peanut pods taken from the field. The R2 and root mean square error of predicted and actual OBB were 0.93 and 4.1%, respectively. The R2 and root mean square error of predicted and actual BL were 0.88 and 1.8%, respectively. The validation of OBB using other images provided reasonable estimation (R2 = 0.98 and RMSE = 2.73%). This study introduces a novel, cost-effective, and non-destructive method for estimating peanut maturity using RGB imagery and Mahalanobis distance classification in the field. This innovative approach addresses the limitations of traditional methods and offers a robust alternative for real-time maturity assessment.展开更多
The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and...The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.展开更多
The brain is a high-energy demanding organ,consuming around 20%of the metabolic energy generated.To fulfill this demand,cerebral blood flow(CBF)supplies oxygen and glucose continuously through the intricate network of...The brain is a high-energy demanding organ,consuming around 20%of the metabolic energy generated.To fulfill this demand,cerebral blood flow(CBF)supplies oxygen and glucose continuously through the intricate network of cerebral blood vessels.Although for many years brain activity and blood flow were conceived as independent processes,MRI-based functional brain imaging demonstrated that there is a coupling between them.展开更多
Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Mo...Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.展开更多
BACKGROUND To investigate the relationship between interstitial maturity and prognosis of colorectal cancer.AIM To examine the correlation between interstitial maturity and the prognosis of colorectal cancer.METHODS T...BACKGROUND To investigate the relationship between interstitial maturity and prognosis of colorectal cancer.AIM To examine the correlation between interstitial maturity and the prognosis of colorectal cancer.METHODS The paper database PubMed,EMBASE,Cochranelibrary,Springerlink,CNKI,and Wanfang database were searched until December 2023."tumor stroma maturity""desmoplastic stroma reaction""desmoplastic reaction""stroma reaction""degree of stroma reaction""stroma classification""stroma density""colorectal cancer""colon cancer""rectal cancer""prognosis"were searched for the search terms.Two system assessors independently screened the literature quality according to the inclusion exclusion criteria,Quality evaluation and data extraction were performed for the included literatures,and meta-analysis was performed for randomized control trials included at using Review Manager 5.2 software.RESULTS Finally,data of 9849 patients with colorectal cancer from 19 cosets in 15 literatures were included,including 4339 patients with mature type(control group),3048 patients with intermediate type(intermediate group)and 2456 patients with immature type(immature group).The results of meta-analysis showed:Relapse-free survival[hazard ratio(HR)=2.66,95%confidence interval(CI):2.30-3.08;P<0.00001],disease-free survival(HR=3.68,95%CI:2.33-5.81;P<0.00001)and overall survival(HR=1.70,95%CI:1.53-1.87;P<0.00001)were significantly lower than those in mature group(control group);relapse-free survival(HR=1.36,95%CI:1.17-1.59;P<0.0001)and disease-free survival rate(HR=1.85,95%CI:1.53-2.24;P<0.0001)was significantly lower than the mature group(control group).CONCLUSION There is the correlation between tumor interstitial maturity and survival prognosis of colorectal cancer,and different degrees of tumor interstitial maturity have a certain impact on the quality of life of colorectal cancer patients.展开更多
Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiment...Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.展开更多
In sweet cherry(Prunus avium L.),quantitative trait loci have been identified for fruit maturity,colour,firmness,and size to develop markers for marker-assisted selection.However,resolution is usually too low in those...In sweet cherry(Prunus avium L.),quantitative trait loci have been identified for fruit maturity,colour,firmness,and size to develop markers for marker-assisted selection.However,resolution is usually too low in those analyses to directly target candidate genes,and some associations are missed.In contrast,genome-wide association studies are performed on broad collections of accessions,and assemblies of reference sequences from Tieton and Satonishiki cultivars enable identification of single nucleotide polymorphisms after whole-genome sequencing,providing high marker density.Two hundred and thirty-five sweet cherry accessions were sequenced and phenotyped for harvest time and fruit colour,firmness,and size.Genome-wide association studies were used to identify single nucleotide polymorphisms associated with each trait,which were verified in breeding material consisting of 64 additional accessions.A total of 1767106 single nucleotide polymorphisms were identified.At that density,significant single nucleotide polymorphisms could be linked to co-inherited haplotype blocks(median size∼10 kb).Thus,markers were tightly associated with respective phenotypes,and individual allelic combinations of particular single nucleotide polymorphisms provided links to distinct phenotypes.In addition,yellow-fruit accessions were sequenced,and a∼90-kb-deletion on chromosome 3 that included five MYB10 transcription factors was associated with the phenotype.Overall,the study confirmed numerous quantitative trait loci from bi-parental populations using high-diversity accession populations,identified novel associations,and genome-wide association studies reduced the size of trait-associated loci from megabases to kilobases and to a few candidate genes per locus.Thus,a framework is provided to develop molecular markers and evaluate and characterize genes underlying important agronomic traits.展开更多
Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related...Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.展开更多
The effectiveness of the Business Intelligence(BI)system mainly depends on the quality of knowledge it produces.The decision-making process is hindered,and the user’s trust is lost,if the knowledge offered is undesir...The effectiveness of the Business Intelligence(BI)system mainly depends on the quality of knowledge it produces.The decision-making process is hindered,and the user’s trust is lost,if the knowledge offered is undesired or of poor quality.A Data Warehouse(DW)is a huge collection of data gathered from many sources and an important part of any BI solution to assist management in making better decisions.The Extract,Transform,and Load(ETL)process is the backbone of a DW system,and it is responsible for moving data from source systems into the DW system.The more mature the ETL process the more reliable the DW system.In this paper,we propose the ETL Maturity Model(EMM)that assists organizations in achieving a high-quality ETL system and thereby enhancing the quality of knowledge produced.The EMM is made up of five levels of maturity i.e.,Chaotic,Acceptable,Stable,Efficient and Reliable.Each level of maturity contains Key Process Areas(KPAs)that have been endorsed by industry experts and include all critical features of a good ETL system.Quality Objectives(QOs)are defined procedures that,when implemented,resulted in a high-quality ETL process.Each KPA has its own set of QOs,the execution of which meets the requirements of that KPA.Multiple brainstorming sessions with relevant industry experts helped to enhance the model.EMMwas deployed in two key projects utilizing multiple case studies to supplement the validation process and support our claim.This model can assist organizations in improving their current ETL process and transforming it into a more mature ETL system.This model can also provide high-quality information to assist users inmaking better decisions and gaining their trust.展开更多
A pyrolysis experiment was carried out on a Dongying Depression kerogen sample to separate the resin from the oil. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with a positive-ion detector w...A pyrolysis experiment was carried out on a Dongying Depression kerogen sample to separate the resin from the oil. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with a positive-ion detector was used to detect the relative proportional changes in the compounds of the resin. During the whole pyrolysis experiment, the relative ratio of resin exceed 10% of the soluble component at each temperature point. Five compounds were detected from the resin: N1, N1O1, N1O_(2), O1, and O_(2). To research the changes in the proportions of the compounds during pyrolysis clearly, these five compounds were divided into three classes: N1, N1Ox, and Ox. The N1 class has the largest proportion in resin at the beginning of the pyrolysis, while Ox class has the least proportion. And the relationship between the number and the molecular mass of three classes compound was researched. With increasing maturity, the proportion of N1 and the N1Ox class decreased rapidly, while the Ox class increased slowly. Through researching these resin compounds, it was found that an inversion in the proportions of above three compounds appeared at the end of the oil window. At the same time, we found that the DBE and carbon number of resin compounds have changed obviously during the pyrolysis: the DBE increased, while the carbon number decreased significantly. And the details of the change of each compound have been researched. This research extends our knowledge of judging the maturity of crude oil during the pyrolysis through the characteristics of compounds in resin and provides the new index based on resin for the evaluation of thermal evolution stage and hydrocarbon generation capacity of source rocks.展开更多
BACKGROUND The exercise of limb function is the most economical and safe method to promote the maturation of arteriovenous fistula(AVF).However,due to the lack of a uni-fied exercise standard in China,many patients ha...BACKGROUND The exercise of limb function is the most economical and safe method to promote the maturation of arteriovenous fistula(AVF).However,due to the lack of a uni-fied exercise standard in China,many patients have insufficient awareness of the importance of AVF,leading to poor effectiveness of limb function exercise.The self-management education model can effectively promote patients to take pro-active health-related actions.This study focuses on the characteristics of patients during the peri-AVF period and conducts a phased limb function exercise under the guidance of the self-management education model to observe changes in fac-tors such as the maturity of AVF.AIM To assess the impact of stage-specific limb function exercises,directed by a self-management education model,on the maturation status of AVFs.METHODS This study is a randomized controlled trial involving 74 patients with forearm AVFs from the Nephrology Department of a tertiary hospital in Sichuan Province,China.Patients were randomly divided into an observation group and a control group using a random number table method.The observation group underwent tailored stage-specific limb func-tion exercises,informed by a self-management education model which took into account the unique features of AVF at various stages,in conjunction with routine care.Conversely,the control group was given standard limb function exercises along with routine care.The assessment involves the maturity of AVFs post-intervention,post-operative complications,and the self-management level of the fistula in both groups patients.Analyses were conducted using SPSS version 23.0.Count data were represented by frequency and percentage and subjected to chi-square test comparisons.Measurement data adhering to a normal distribution were presented as mean±SD.The independent samples t-test was utilized for inter-group comparisons,while the paired t-test was used for intra-group comparisons.For measurement data not fitting a normal distribution,the median and interquartile range were presented and analyzed using the Wilcoxon rank sum test.RESULTS At the 8-wk postoperative mark,the observation group demonstrated significantly higher scores in AVF symptom recognition,symptom prevention,and self-management compared to the control group(P<0.05).However,the variance in symptom management scores between the observation and control groups lacked statistical signi-ficance(P>0.05).At 4 wk after the operation,the observation group displayed a superior vessel diameter and depth from the skin of the drainage vessels in comparison to the control group(P<0.05).While the observation group did manifest elevated blood flow rates in the drainage vessels relative to the control group,this distinction was not statistically significant(P>0.05).By the 8-wk postoperative interval,the observation group outperformed the control group with notable enhancements in blood flow rates,vessel diameter,and depth from the skin of drainage vessels(P<0.01).Seven days following the procedure,the observation group manifested significantly diminished limb swelling and an overall reduced complication rate in contrast to the control group(P<0.05).The evaluation of infection,thrombosis,embolism,arterial aneurysm stenosis,and incision bleeding showed no notable differences between the two groups(P>0.05).By the 4-wk postoperative juncture,complications between the observation and control groups were statistically indistinguishable(P>0.05).CONCLUSION Stage-specific limb function exercises,under the guidance of a self-management education model,amplify the capacity of AVF patients to discern and prevent symptoms.Additionally,they expedite AVF maturation and miti-gate postoperative limb edema,underscoring their efficacy as a valuable method for the care and upkeep of AVF in hemodialysis patients.展开更多
Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed t...Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.展开更多
Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage f...Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage form of pulmonary surfactant within Type II pneumocytes, secretion of which increases with advancing gestational age, thus enabling prediction of the degree of FLM. Preterm premature rupture of membranes (PPROM) complicates approximately 1/3 of all preterm births. Birth within 1 week is the most likely outcome for any patient with PPROM in the absence of adjunctive treatments. Respiratory distress has been reported to be the most common complication of preterm birth. Sepsis, intraventricular haemorrhage, and necrotizing enterocolitis also are associated with prematurity, but these are less common near to term. Objective: To assess the efficacy of the amniotic fluid lamellar body counting from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Methods: This study was conducted at Ain Shams University Maternity Hospital in the emergency ward from January 2019 to September 2019. It included 106 women with singleton pregnancies, gestational age from 28 - 36 weeks with preterm premature rupture of membranes. This study is designed to assess the efficacy of the amniotic fluid lamellar body counting (LBC) from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Results: The current study revealed a highly significant increase in the lamellar body count in cases giving birth to neonates without RDS compared to that cases giving birth to neonates with RDS. Also, no statistically significant difference between LBC and age, parity and number of previous miscarriages in the mother was found. Gestational age at delivery was significantly lower among cases with respiratory distress. Steroid administration was significantly less frequent among cases with respiratory distress. However, lamellar bodies had high diagnostic performance in the prediction of respiratory distress. Conclusion: Lamellar body count (LBC) is an effective, safe, easy, and cost-effective method to assess fetal lung maturity (FLM). It does not need a highly equipped laboratory or specially trained personnel, it just needs the conventional blood count analyzer. Measurement of LBC is now replacing the conventional Lecithin/Sphyngomyelin L/S ratio. LBC cut-off value of ≤42.5 × 10<sup>3</sup>/μL can be used safely to decide fetal lung maturity with sensitivity of 95.7% and specificity of 97.6%.展开更多
Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat...Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.展开更多
Watermelon(Citrullus lanatus)holds global significance as a fruit with high economic and nutritional value.Exploring the regulatory network of watermelon male reproductive development is crucial for developing male st...Watermelon(Citrullus lanatus)holds global significance as a fruit with high economic and nutritional value.Exploring the regulatory network of watermelon male reproductive development is crucial for developing male sterile materials and facilitating cross-breeding.Despite its importance,there is a lack of research on the regulation mechanism of male reproductive development in watermelon.In this study,we identified that ClESR2,a VIIIb subclass member in the APETALA2/Ethylene Responsive Factor(AP2/ERF)superfamily,was a key factor in pollen development.RNA insitu hybridization confirmed significantClESR2 expression in the tapetum and pollen during the later stage of anther development.The pollens of transgenic plants showed major defects in morphology and vitality at the late development stage.The RNA-seq and protein interaction assay confirmed that ClESR2 regulates pollen morphology and fertility by interacting with key genes involved in pollen development at both transcriptional and protein levels.These suggest that Enhancer of Shoot Regeneration 2(ESR2)plays an important role in pollen maturation and vitality.This study helps understand the male reproductive development of watermelon,providing a theoretical foundation for developing male sterile materials.展开更多
The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and aft...The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings.展开更多
Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era...Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.展开更多
Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions...Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.展开更多
Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.There...Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.展开更多
In order to ensure e-government construction healthily,rapidly and orderly develop,an e-government maturity model(EGMM)is proposed based on a software capability maturity model (CMM)and a project management maturi...In order to ensure e-government construction healthily,rapidly and orderly develop,an e-government maturity model(EGMM)is proposed based on a software capability maturity model (CMM)and a project management maturity model(PMMM). Five levels of maturity in e-government development process are constructed,which include network infrastructure,information serving,information interactive,information sharing and comprehensive integrating.An index system of e-government maturity is put forward,and then an e-government maturity levels evaluation method is presented,which can provide clear,detailed and efficient decision information and investment directions of e-government for decision-makers.The EGMM and its maturity evaluation method are helpful for improving the construction of e-government.展开更多
文摘Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove outer skin of the pod (exocarp) to expose the color of the middle layer (mesocarp). The mesocarp color changes with maturity from white to yellow, orange, brown and finally black. The sum of percentage from orange, brown, and black mesocarp (OBB) color and black color (BL) represents the kernels that are mature enough to harvest. The goal of this research is to identify methodologies to estimate OBB and BL of the pods using RGB images taken in the field and validate the proposed model using other pod images. The Mahalanobis distance classification method was used to process sets of images and calculate pod area (number of pixels) corresponding to two classes (mesocarp and background) with nine different color groups. The results showed a performance of 94% effectiveness for mesocarp using Mahalanobis distance classification. Statistical regression for OBB and BL was developed based on 315 images of peanut pods taken from the field. The R2 and root mean square error of predicted and actual OBB were 0.93 and 4.1%, respectively. The R2 and root mean square error of predicted and actual BL were 0.88 and 1.8%, respectively. The validation of OBB using other images provided reasonable estimation (R2 = 0.98 and RMSE = 2.73%). This study introduces a novel, cost-effective, and non-destructive method for estimating peanut maturity using RGB imagery and Mahalanobis distance classification in the field. This innovative approach addresses the limitations of traditional methods and offers a robust alternative for real-time maturity assessment.
文摘The fruits of Dacryodes edulis are rich in biologically active substances, which makes them of great interest in terms of validation. In this study, we targeted the primary metabolites in the epicarp, the mesocarp and the seed of the fruit of Dacryodes edulis at taste maturity, which were selected for their nutritional quality and its appreciation throughout the Gulf of Guinea area, which is very popular because of its large size, texture and special taste. The evaluation of total carbohydrates, total lipids and soluble proteins in the epicarp, mesocarp and seed of the fruit at taste maturity was made from spectrophotometer measurements. The overall analysis of the results of the present study shows that total carbohydrates, total lipids and proteins accumulate more in the seed with respectively 251.33 ± 1.15 mg/g DM;9.92 ± 0.201 mg/g DM and 55.075 ± 0.024 mg/g DM. Likewise, the results indicate low concentrations of total carbohydrates and total lipids in the epicarp with respectively 245 ± 1 mg/g DM and 4.77 ± 0.047 mg/g DM, on the other hand, it is the mesocarp which presents the lowest content of soluble proteins: 28.075 ± 3.231 mg/g DM. This variation could be linked to the nature of the compartment, more particularly to the storage location. This comparative study could lead to the valorization of the seed of the fruit of Dacryodes edulis for its richness in metabolites and arouse significant interest in nutrition.
基金funded by the Ministry of Science,Innovation and Universities(MICIU)through the project NEUR-ON-A-CHIP(RTI2018-097038-B-C21 and RTI2018-097038-B-C22)(to MM,AL)the project UNIBBB(PDC2022-133918-C21)(to MM,AL)+4 种基金supported by Networking Biomedical Research Center(CIBER),Spain(to MM,AL)CIBER is an initiative funded by the VI National R&D&i Plan 2008–2011,Iniciativa Ingenio 2010,Consolider Program,CIBER Actions,and the Instituto de Salud Carlos III,with the support of the European Regional Development Fundfunded by the CERCA Programby the Commission for Universities and Research of the Department of Innovation,Universities,and Enterprise of the Generalitat de Catalunya(2017 SGR 1079)(to MM,AL)support from the program for predoctoral contracts for the training of doctors of the State Training Subprogram for the Promotion of Talent and its Employability in R+D+I(PRE2019-088286)by the Ministry of Science,Innovation and Universities(MICIU)。
文摘The brain is a high-energy demanding organ,consuming around 20%of the metabolic energy generated.To fulfill this demand,cerebral blood flow(CBF)supplies oxygen and glucose continuously through the intricate network of cerebral blood vessels.Although for many years brain activity and blood flow were conceived as independent processes,MRI-based functional brain imaging demonstrated that there is a coupling between them.
文摘Software delivery is vital for modern organizations, driving innovation and competitiveness. Measuring an organization’s maturity in software delivery is crucial for efficiency and quality. The Capability Maturity Model (CMM) framework provides a roadmap for improvement but assessing an organization’s CMM Level is challenging. This paper offers a quantitative approach tailored to the CMM framework, using Goal-Question-Metric (GQM) frame-works for each key process area (KPA). These frameworks include metrics and questions to compute maturity scores effectively. The study also refines practices into questions for a thorough assessment. The result is an Analysis Matrix that calculates weighted scores and an overall maturity score. This approach helps organizations assess and enhance their software delivery processes systematically, aiming for improved practices and growth.
文摘BACKGROUND To investigate the relationship between interstitial maturity and prognosis of colorectal cancer.AIM To examine the correlation between interstitial maturity and the prognosis of colorectal cancer.METHODS The paper database PubMed,EMBASE,Cochranelibrary,Springerlink,CNKI,and Wanfang database were searched until December 2023."tumor stroma maturity""desmoplastic stroma reaction""desmoplastic reaction""stroma reaction""degree of stroma reaction""stroma classification""stroma density""colorectal cancer""colon cancer""rectal cancer""prognosis"were searched for the search terms.Two system assessors independently screened the literature quality according to the inclusion exclusion criteria,Quality evaluation and data extraction were performed for the included literatures,and meta-analysis was performed for randomized control trials included at using Review Manager 5.2 software.RESULTS Finally,data of 9849 patients with colorectal cancer from 19 cosets in 15 literatures were included,including 4339 patients with mature type(control group),3048 patients with intermediate type(intermediate group)and 2456 patients with immature type(immature group).The results of meta-analysis showed:Relapse-free survival[hazard ratio(HR)=2.66,95%confidence interval(CI):2.30-3.08;P<0.00001],disease-free survival(HR=3.68,95%CI:2.33-5.81;P<0.00001)and overall survival(HR=1.70,95%CI:1.53-1.87;P<0.00001)were significantly lower than those in mature group(control group);relapse-free survival(HR=1.36,95%CI:1.17-1.59;P<0.0001)and disease-free survival rate(HR=1.85,95%CI:1.53-2.24;P<0.0001)was significantly lower than the mature group(control group).CONCLUSION There is the correlation between tumor interstitial maturity and survival prognosis of colorectal cancer,and different degrees of tumor interstitial maturity have a certain impact on the quality of life of colorectal cancer patients.
基金Supported by the National Natural Science Foundation of China(U22B6004)Scientific Research and Technological Development Project of RIPED(2022yjcq03)Technology Research Project of PetroChina Changqing Oilfield Company(KJZX2023-01)。
文摘Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.
基金This work was supported by the Ministry of Agri-culture of the Czech Republic(project QK1910290)Computational resources were supplied by the project“e-Infrastruktura CZ”(e-INFRA CZ LM2018140)supported by the Ministry of Education,Youth and Sports of the Czech Republic.
文摘In sweet cherry(Prunus avium L.),quantitative trait loci have been identified for fruit maturity,colour,firmness,and size to develop markers for marker-assisted selection.However,resolution is usually too low in those analyses to directly target candidate genes,and some associations are missed.In contrast,genome-wide association studies are performed on broad collections of accessions,and assemblies of reference sequences from Tieton and Satonishiki cultivars enable identification of single nucleotide polymorphisms after whole-genome sequencing,providing high marker density.Two hundred and thirty-five sweet cherry accessions were sequenced and phenotyped for harvest time and fruit colour,firmness,and size.Genome-wide association studies were used to identify single nucleotide polymorphisms associated with each trait,which were verified in breeding material consisting of 64 additional accessions.A total of 1767106 single nucleotide polymorphisms were identified.At that density,significant single nucleotide polymorphisms could be linked to co-inherited haplotype blocks(median size∼10 kb).Thus,markers were tightly associated with respective phenotypes,and individual allelic combinations of particular single nucleotide polymorphisms provided links to distinct phenotypes.In addition,yellow-fruit accessions were sequenced,and a∼90-kb-deletion on chromosome 3 that included five MYB10 transcription factors was associated with the phenotype.Overall,the study confirmed numerous quantitative trait loci from bi-parental populations using high-diversity accession populations,identified novel associations,and genome-wide association studies reduced the size of trait-associated loci from megabases to kilobases and to a few candidate genes per locus.Thus,a framework is provided to develop molecular markers and evaluate and characterize genes underlying important agronomic traits.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Precision Seed Design and Breeding,XDA24010108)National Natural Science Foundation of China(31972780&31721005)+1 种基金National Key R&D Program of China(2018YFA0801000)State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ05)。
文摘Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.
基金King Saud University for funding this work through Researchers Supporting Project Number(RSP-2021/387),King Saud University,Riyadh,Saudi Arabia.
文摘The effectiveness of the Business Intelligence(BI)system mainly depends on the quality of knowledge it produces.The decision-making process is hindered,and the user’s trust is lost,if the knowledge offered is undesired or of poor quality.A Data Warehouse(DW)is a huge collection of data gathered from many sources and an important part of any BI solution to assist management in making better decisions.The Extract,Transform,and Load(ETL)process is the backbone of a DW system,and it is responsible for moving data from source systems into the DW system.The more mature the ETL process the more reliable the DW system.In this paper,we propose the ETL Maturity Model(EMM)that assists organizations in achieving a high-quality ETL system and thereby enhancing the quality of knowledge produced.The EMM is made up of five levels of maturity i.e.,Chaotic,Acceptable,Stable,Efficient and Reliable.Each level of maturity contains Key Process Areas(KPAs)that have been endorsed by industry experts and include all critical features of a good ETL system.Quality Objectives(QOs)are defined procedures that,when implemented,resulted in a high-quality ETL process.Each KPA has its own set of QOs,the execution of which meets the requirements of that KPA.Multiple brainstorming sessions with relevant industry experts helped to enhance the model.EMMwas deployed in two key projects utilizing multiple case studies to supplement the validation process and support our claim.This model can assist organizations in improving their current ETL process and transforming it into a more mature ETL system.This model can also provide high-quality information to assist users inmaking better decisions and gaining their trust.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010102).
文摘A pyrolysis experiment was carried out on a Dongying Depression kerogen sample to separate the resin from the oil. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with a positive-ion detector was used to detect the relative proportional changes in the compounds of the resin. During the whole pyrolysis experiment, the relative ratio of resin exceed 10% of the soluble component at each temperature point. Five compounds were detected from the resin: N1, N1O1, N1O_(2), O1, and O_(2). To research the changes in the proportions of the compounds during pyrolysis clearly, these five compounds were divided into three classes: N1, N1Ox, and Ox. The N1 class has the largest proportion in resin at the beginning of the pyrolysis, while Ox class has the least proportion. And the relationship between the number and the molecular mass of three classes compound was researched. With increasing maturity, the proportion of N1 and the N1Ox class decreased rapidly, while the Ox class increased slowly. Through researching these resin compounds, it was found that an inversion in the proportions of above three compounds appeared at the end of the oil window. At the same time, we found that the DBE and carbon number of resin compounds have changed obviously during the pyrolysis: the DBE increased, while the carbon number decreased significantly. And the details of the change of each compound have been researched. This research extends our knowledge of judging the maturity of crude oil during the pyrolysis through the characteristics of compounds in resin and provides the new index based on resin for the evaluation of thermal evolution stage and hydrocarbon generation capacity of source rocks.
基金Supported by The Research Project 2022 of The People's Hospital of Jianyang City,No.JY202208.
文摘BACKGROUND The exercise of limb function is the most economical and safe method to promote the maturation of arteriovenous fistula(AVF).However,due to the lack of a uni-fied exercise standard in China,many patients have insufficient awareness of the importance of AVF,leading to poor effectiveness of limb function exercise.The self-management education model can effectively promote patients to take pro-active health-related actions.This study focuses on the characteristics of patients during the peri-AVF period and conducts a phased limb function exercise under the guidance of the self-management education model to observe changes in fac-tors such as the maturity of AVF.AIM To assess the impact of stage-specific limb function exercises,directed by a self-management education model,on the maturation status of AVFs.METHODS This study is a randomized controlled trial involving 74 patients with forearm AVFs from the Nephrology Department of a tertiary hospital in Sichuan Province,China.Patients were randomly divided into an observation group and a control group using a random number table method.The observation group underwent tailored stage-specific limb func-tion exercises,informed by a self-management education model which took into account the unique features of AVF at various stages,in conjunction with routine care.Conversely,the control group was given standard limb function exercises along with routine care.The assessment involves the maturity of AVFs post-intervention,post-operative complications,and the self-management level of the fistula in both groups patients.Analyses were conducted using SPSS version 23.0.Count data were represented by frequency and percentage and subjected to chi-square test comparisons.Measurement data adhering to a normal distribution were presented as mean±SD.The independent samples t-test was utilized for inter-group comparisons,while the paired t-test was used for intra-group comparisons.For measurement data not fitting a normal distribution,the median and interquartile range were presented and analyzed using the Wilcoxon rank sum test.RESULTS At the 8-wk postoperative mark,the observation group demonstrated significantly higher scores in AVF symptom recognition,symptom prevention,and self-management compared to the control group(P<0.05).However,the variance in symptom management scores between the observation and control groups lacked statistical signi-ficance(P>0.05).At 4 wk after the operation,the observation group displayed a superior vessel diameter and depth from the skin of the drainage vessels in comparison to the control group(P<0.05).While the observation group did manifest elevated blood flow rates in the drainage vessels relative to the control group,this distinction was not statistically significant(P>0.05).By the 8-wk postoperative interval,the observation group outperformed the control group with notable enhancements in blood flow rates,vessel diameter,and depth from the skin of drainage vessels(P<0.01).Seven days following the procedure,the observation group manifested significantly diminished limb swelling and an overall reduced complication rate in contrast to the control group(P<0.05).The evaluation of infection,thrombosis,embolism,arterial aneurysm stenosis,and incision bleeding showed no notable differences between the two groups(P>0.05).By the 4-wk postoperative juncture,complications between the observation and control groups were statistically indistinguishable(P>0.05).CONCLUSION Stage-specific limb function exercises,under the guidance of a self-management education model,amplify the capacity of AVF patients to discern and prevent symptoms.Additionally,they expedite AVF maturation and miti-gate postoperative limb edema,underscoring their efficacy as a valuable method for the care and upkeep of AVF in hemodialysis patients.
基金Major Project of National Natural Science Foundation of China(42090020,42090025)Major Project of CNPC(2019E-2601)。
文摘Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.
文摘Background: Respiratory distress syndrome (RDS) is a major cause of neonatal morbidity and mortality, affecting approximately 1% of all live births and 10% of all preterm infants. Lamellar bodies represent a storage form of pulmonary surfactant within Type II pneumocytes, secretion of which increases with advancing gestational age, thus enabling prediction of the degree of FLM. Preterm premature rupture of membranes (PPROM) complicates approximately 1/3 of all preterm births. Birth within 1 week is the most likely outcome for any patient with PPROM in the absence of adjunctive treatments. Respiratory distress has been reported to be the most common complication of preterm birth. Sepsis, intraventricular haemorrhage, and necrotizing enterocolitis also are associated with prematurity, but these are less common near to term. Objective: To assess the efficacy of the amniotic fluid lamellar body counting from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Methods: This study was conducted at Ain Shams University Maternity Hospital in the emergency ward from January 2019 to September 2019. It included 106 women with singleton pregnancies, gestational age from 28 - 36 weeks with preterm premature rupture of membranes. This study is designed to assess the efficacy of the amniotic fluid lamellar body counting (LBC) from a vaginal pool in predicting fetal lung maturity in women with preterm premature rupture of membranes. Results: The current study revealed a highly significant increase in the lamellar body count in cases giving birth to neonates without RDS compared to that cases giving birth to neonates with RDS. Also, no statistically significant difference between LBC and age, parity and number of previous miscarriages in the mother was found. Gestational age at delivery was significantly lower among cases with respiratory distress. Steroid administration was significantly less frequent among cases with respiratory distress. However, lamellar bodies had high diagnostic performance in the prediction of respiratory distress. Conclusion: Lamellar body count (LBC) is an effective, safe, easy, and cost-effective method to assess fetal lung maturity (FLM). It does not need a highly equipped laboratory or specially trained personnel, it just needs the conventional blood count analyzer. Measurement of LBC is now replacing the conventional Lecithin/Sphyngomyelin L/S ratio. LBC cut-off value of ≤42.5 × 10<sup>3</sup>/μL can be used safely to decide fetal lung maturity with sensitivity of 95.7% and specificity of 97.6%.
基金supported partially by the USDA-ARS Research Project#6054-44000-080-00D.
文摘Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment.
基金support from the National Key Research and Development Program of China(2022YFD1602000)the National Natural Science Foundation of China(32202514,U22A20498 and 32072596)+2 种基金the Joint Fund of Henan Province Science and Technology Research and Development Plan,China(222103810009)the Science and Technology Innovation Team of Shaanxi,China(2021TD-32)the China Postdoctoral Science Foundation(2022M711064 and 2023M741062).
文摘Watermelon(Citrullus lanatus)holds global significance as a fruit with high economic and nutritional value.Exploring the regulatory network of watermelon male reproductive development is crucial for developing male sterile materials and facilitating cross-breeding.Despite its importance,there is a lack of research on the regulation mechanism of male reproductive development in watermelon.In this study,we identified that ClESR2,a VIIIb subclass member in the APETALA2/Ethylene Responsive Factor(AP2/ERF)superfamily,was a key factor in pollen development.RNA insitu hybridization confirmed significantClESR2 expression in the tapetum and pollen during the later stage of anther development.The pollens of transgenic plants showed major defects in morphology and vitality at the late development stage.The RNA-seq and protein interaction assay confirmed that ClESR2 regulates pollen morphology and fertility by interacting with key genes involved in pollen development at both transcriptional and protein levels.These suggest that Enhancer of Shoot Regeneration 2(ESR2)plays an important role in pollen maturation and vitality.This study helps understand the male reproductive development of watermelon,providing a theoretical foundation for developing male sterile materials.
文摘The Pabdeh Formation represents organic matter enrichment in some oil fields,which can be considered a source rock.This study is based on the Rock–Eval,Iatroscan,and electron microscopy imaging results before and after heating the samples.We discovered this immature shale that undergoes burial and diagenesis,in which organic matter is converted into hydro-carbons.Primary migration is the process that transports hydrocarbons in the source rock.We investigated this phenomenon by developing a model that simulates hydrocarbon generation and fluid pressure during kerogen-to-hydrocarbon conversion.Microfractures initially formed at the tip/edge of kerogen and were filled with hydrocarbons,but as catagenesis progressed,the pressure caused by the volume increase of kerogen decreased due to hydrocarbon release.The transformation of solid kerogen into low-density bitumen/oil increased the pressure,leading to the development of damage zones in the source rock.The Pabdeh Formation’s small porethroats hindered effective expulsion,causing an increase in pore fluid pressure inside the initial microfractures.The stress accumulated due to hydrocarbon production,reaching the rock’s fracture strength,further contributed to damage zone development.During the expansion process,microfractures preferentially grew in low-strength pathways such as lithology changes,laminae boundaries,and pre-existing microfractures.When the porous pressure created by each kerogen overlapped,individual microfractures interconnected,forming a network of microfractures within the source rock.This research sheds light on the complex interplay between temperature,hydrocarbon generation,and the development of expulsion fractures in the Pabdeh Formation,providing valuable insights for understanding and optimizing hydrocarbon extraction in similar geological settings.
文摘Background Globally,the cultivation of cotton is constrained by its tendency for extended periods of growth.Early maturity plays a potential role in rainfed-based multiple cropping system especially in the current era of climate change.In the current study,a set of 20 diverse Gossypium hirsutum genotypes were evaluated in two crop seasons with three planting densities and assessed for 11 morphological traits related to early maturity.The study aimed to identify genotype(s)that mature rapidly and accomplish well under diverse environmental conditions based on the two robust multivariate techniques called multi-trait stability index(MTSI)and multi-trait genotype-ideotype distance index(MGIDI).Results MTSI analysis revealed that out of the 20 genotypes,three genotypes,viz.,NNDC-30,A-2,and S-32 accomplished well in terms of early maturity traits in two seasons.Furthermore,three genotypes were selected using MGIDI method for each planting densities with a selection intensity of 15%.The strengths and weaknesses of the genotypes selected based on MGIDI method highlighted that the breeders could focus on developing early-maturing genotypes with specific traits such as days to first flower and boll opening.The selected genotypes exhibited positive genetic gains for traits related to earliness and a successful harvest during the first and second pickings.However,there were negative gains for traits related to flowering and boll opening.Conclusion The study identified three genotypes exhibiting early maturity and accomplished well under different planting densities.The multivariate methods(MTSI and MGIDI)serve as novel approaches for selecting desired genotypes in plant breeding programs,especially across various growing environments.These methods offer exclusive benefits and can easily construe and minimize multicollinearity issues.
基金supported by grants from the National Key R&D Program of China (2023YFD1201300)CAAS Agricultural Science and Technology Innovation Project
文摘Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.
基金This work was supported by the Science and Technology Development Plan Project of Jilin Province,China(20200402115NC).
文摘Tilia amurensis is an economically valuable broadleaf tree species in Northeast China.The production of highqualityT.amurensis varieties at commercial scales has been greatly limited by the low germination rates.Thereis thus a pressing need to develop an organogenesis protocol for in vitro propagation of T.amurensis to alleviate ashortage of high-quality T.amurensis seedlings.Here,we established a rapid in vitro propagation system forT.amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture mediain different stages.We found that Woody plant medium(WPM)was the optimal primary culture medium formature zygotic embryos.The highest callus induction percentage(68.76%)and number of axillary buds induced(3.2)were obtained in WPM+0.89μmol/L 6-benzyladenine(6-BA)+0.46μmol/L kinetin(KT)+0.25μmol/Lindole-3-butryic acid(IBA)+1.44μmol/L gibberellin A_(3)(GA_(3)).The multiple shoot bud development achievedthe highest percentage(83.32%)in the Murashige and Skoog(MS)+2.22μmol/L 6-BA+0.25μmol/L IBA+1.44μmol/L GA_(3).The rooting percentage(96.70%)was highest in 1/2 MS medium+1.48μmol/L IBA.Thesurvival percentage of transplanting plantlets was 82.22%in soil:vermiculite:perlite(5:3:1).Our study is the firstto establish an effective organogenesis protocol for T.amurensis using mature zygotic embryos.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAH02A12)the National High Technology Research and Development Program of China(863 Program)(No.2006AA010101)
文摘In order to ensure e-government construction healthily,rapidly and orderly develop,an e-government maturity model(EGMM)is proposed based on a software capability maturity model (CMM)and a project management maturity model(PMMM). Five levels of maturity in e-government development process are constructed,which include network infrastructure,information serving,information interactive,information sharing and comprehensive integrating.An index system of e-government maturity is put forward,and then an e-government maturity levels evaluation method is presented,which can provide clear,detailed and efficient decision information and investment directions of e-government for decision-makers.The EGMM and its maturity evaluation method are helpful for improving the construction of e-government.